dc.contributor.author |
Charalampakis, AE |
en |
dc.contributor.author |
Dimou, CK |
en |
dc.date.accessioned |
2014-03-01T01:33:37Z |
|
dc.date.available |
2014-03-01T01:33:37Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0045-7949 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20492 |
|
dc.subject |
Bouc-Wen |
en |
dc.subject |
Genetic algorithms |
en |
dc.subject |
Hybrid methods |
en |
dc.subject |
Hysteresis |
en |
dc.subject |
Identification |
en |
dc.subject |
PSO |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.other |
Bouc-Wen |
en |
dc.subject.other |
Computational budget |
en |
dc.subject.other |
Full scale |
en |
dc.subject.other |
Hybrid method |
en |
dc.subject.other |
Hysteretic systems |
en |
dc.subject.other |
Identification |
en |
dc.subject.other |
Nonlinear identifications |
en |
dc.subject.other |
Particle swarm optimization algorithm |
en |
dc.subject.other |
PSO |
en |
dc.subject.other |
PSO algorithms |
en |
dc.subject.other |
Welded steel connections |
en |
dc.subject.other |
Competition |
en |
dc.subject.other |
Genetic algorithms |
en |
dc.subject.other |
Hysteresis |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Stiffness |
en |
dc.subject.other |
Particle swarm optimization (PSO) |
en |
dc.title |
Identification of Bouc-Wen hysteretic systems using particle swarm optimization |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.compstruc.2010.06.009 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.compstruc.2010.06.009 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this paper, two variants of the particle swarm optimization (PSO) algorithm are employed for the identification of Bouc-Wen hysteretic systems. The first variant is simple while the other is enhanced, as it implements additional operators. The algorithms are utilized for the identification of a Bouc-Wen hysteretic system that represents a full scale bolted-welded steel connection. The purpose of this work is to assess their comparative performance against other evolutionary algorithms in a highly non-linear identification problem on various levels of computational budget. The enhanced PSO algorithm outperforms its competitors in terms of both accuracy and robustness. (C) 2010 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Computers and Structures |
en |
dc.identifier.doi |
10.1016/j.compstruc.2010.06.009 |
en |
dc.identifier.isi |
ISI:000288776600002 |
en |
dc.identifier.volume |
88 |
en |
dc.identifier.issue |
21-22 |
en |
dc.identifier.spage |
1197 |
en |
dc.identifier.epage |
1205 |
en |