dc.contributor.author |
Wu, W |
en |
dc.contributor.author |
Spyrou, KJ |
en |
dc.contributor.author |
McCue, LS |
en |
dc.date.accessioned |
2014-03-01T01:33:37Z |
|
dc.date.available |
2014-03-01T01:33:37Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0029-8018 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20497 |
|
dc.subject |
Broaching-to |
en |
dc.subject |
Global bifurcation |
en |
dc.subject |
Homoclinic |
en |
dc.subject |
Melnikov's method |
en |
dc.subject |
Non-Hamiltonian |
en |
dc.subject |
Ship stability |
en |
dc.subject |
Surf-riding |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Engineering, Ocean |
en |
dc.subject.classification |
Oceanography |
en |
dc.subject.classification |
Water Resources |
en |
dc.subject.other |
Global bifurcations |
en |
dc.subject.other |
Homoclinic |
en |
dc.subject.other |
Melnikov's method |
en |
dc.subject.other |
Non-Hamiltonian |
en |
dc.subject.other |
Surf riding |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Hamiltonians |
en |
dc.subject.other |
Ships |
en |
dc.subject.other |
Broaching |
en |
dc.subject.other |
bifurcation |
en |
dc.subject.other |
chaotic dynamics |
en |
dc.subject.other |
computer simulation |
en |
dc.subject.other |
damping |
en |
dc.subject.other |
design method |
en |
dc.subject.other |
nonlinearity |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
prediction |
en |
dc.subject.other |
ship design |
en |
dc.subject.other |
threshold |
en |
dc.title |
Improved prediction of the threshold of surf-riding of a ship in steep following seas |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.oceaneng.2010.04.006 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.oceaneng.2010.04.006 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
An extended version of Melnikov's method is implemented in order to predict more accurately the threshold of global surf-riding for a ship operating in steep following seas. The key advantage of the proposed method is that it overcomes the limitation of small damping and/or small forcing that are intrinsic to the implementation of the standard Melnikov's method. A reference ITTC ship is used here by way of example and the result is compared to that obtained from standard analysis as well as numerical simulations. Because of the primary drawback of the extended Melnikov's method is the inability to arrive at a closed form equation, in this work the authors arrive at a ""best fit"" approximation to the extended Melnikov numerically predicted result. © 2010 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Ocean Engineering |
en |
dc.identifier.doi |
10.1016/j.oceaneng.2010.04.006 |
en |
dc.identifier.isi |
ISI:000281596600002 |
en |
dc.identifier.volume |
37 |
en |
dc.identifier.issue |
13 |
en |
dc.identifier.spage |
1103 |
en |
dc.identifier.epage |
1110 |
en |