HEAL DSpace

Improving feasibility of robotic milling through robot placement optimisation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vosniakos, GC en
dc.contributor.author Matsas, E en
dc.date.accessioned 2014-03-01T01:33:38Z
dc.date.available 2014-03-01T01:33:38Z
dc.date.issued 2010 en
dc.identifier.issn 0736-5845 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20500
dc.subject Robotic milling en
dc.subject Genetic algorithms en
dc.subject Inverse dynamics en
dc.subject Manipulability en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Manufacturing en
dc.subject.classification Robotics en
dc.subject.other SCULPTURED SURFACE en
dc.subject.other ARTICULATED ROBOT en
dc.subject.other GENETIC ALGORITHM en
dc.subject.other LOCATION en
dc.subject.other PERFORMANCE en
dc.subject.other PATH en
dc.title Improving feasibility of robotic milling through robot placement optimisation en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.rcim.2010.04.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.rcim.2010.04.001 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract Milling performed with robots is quite demanding, even for low-strength materials, due to the high accuracy requirements, the generally high and periodically varying milling forces and the low stiffness of robots compared to CNC machine tools. In view of the generally improved recently robot stiffness, it is desirable to perform the milling operation in regions of the robot's workspace where manipulability, both kinematic and dynamic, is highest, thereby exhausting the robot's potential to cope with the process. In addition, by selecting the most suitable initial pose of the robot with respect to the workpiece, a reduction in the range of necessary joint torques may be reached, to the extent of alleviating the heavy requirements on the robot. Two genetic algorithms (GAs) are employed to tackle these problems. The values of several robot variables, such as joint positions and torques, which are needed by the genetic algorithms, are calculated using inverse kinematics and inverse dynamics models. In addition, initial positions and poses leading to singularities along the milling path are penalized and, thus, avoided. The first GA deals solely with robot kinematics to maximize manipulability. The second GA takes into account milling forces, which are computed numerically according to the particular milling parameters, to minimise joint torque loads. (C) 2010 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING en
dc.identifier.doi 10.1016/j.rcim.2010.04.001 en
dc.identifier.isi ISI:000279307600012 en
dc.identifier.volume 26 en
dc.identifier.issue 5 en
dc.identifier.spage 517 en
dc.identifier.epage 525 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής