dc.contributor.author |
Vamvatsikos, D |
en |
dc.contributor.author |
Fragiadakis, M |
en |
dc.date.accessioned |
2014-03-01T01:33:38Z |
|
dc.date.available |
2014-03-01T01:33:38Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0098-8847 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20505 |
|
dc.subject |
Epistemic uncertainty |
en |
dc.subject |
First-order second-moment |
en |
dc.subject |
Incremental dynamic analysis |
en |
dc.subject |
Latin hypercube sampling |
en |
dc.subject |
Monte carlo |
en |
dc.subject |
Performance-based earthquake engineering |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Engineering, Geological |
en |
dc.subject.other |
Epistemic uncertainties |
en |
dc.subject.other |
First order second moment |
en |
dc.subject.other |
Incremental dynamic analysis |
en |
dc.subject.other |
Latin hypercube sampling |
en |
dc.subject.other |
MONTE CARLO |
en |
dc.subject.other |
Performance-based earthquake engineering |
en |
dc.subject.other |
Civil engineering |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Dynamic analysis |
en |
dc.subject.other |
Earthquakes |
en |
dc.subject.other |
Engineering geology |
en |
dc.subject.other |
Geometry |
en |
dc.subject.other |
Hardening |
en |
dc.subject.other |
Model structures |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Rotation |
en |
dc.subject.other |
Seismic waves |
en |
dc.subject.other |
Sensitivity analysis |
en |
dc.subject.other |
Uncertainty analysis |
en |
dc.subject.other |
accuracy assessment |
en |
dc.subject.other |
computer simulation |
en |
dc.subject.other |
dynamic analysis |
en |
dc.subject.other |
earthquake engineering |
en |
dc.subject.other |
Monte Carlo analysis |
en |
dc.subject.other |
multistorey building |
en |
dc.subject.other |
performance assessment |
en |
dc.subject.other |
sampling |
en |
dc.subject.other |
seismic response |
en |
dc.subject.other |
sensitivity analysis |
en |
dc.subject.other |
steel structure |
en |
dc.subject.other |
structural analysis |
en |
dc.subject.other |
uncertainty analysis |
en |
dc.title |
Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/eqe.935 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/eqe.935 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Incremental dynamic analysis (IDA) is presented as a powerful tool to evaluate the variability in the seismic demand and capacity of non-deterministic structural models, building upon existing methodologies of Monte Carlo simulation and approximate moment-estimation. A nine-story steel moment-resisting frame is used as a testbed, employing parameterized moment-rotation relationships with non-deterministic quadrilinear backbones for the beam plastic-hinges. The uncertain properties of the backbones include the yield moment, the post-yield hardening ratio, the end-of-hardening rotation, the slope of the descending, branch, the residual moment capacity and the ultimate rotation reached. IDA is employed to accurately assess the seismic performance of the model for any combination of the parameters by performing Multiple nonlinear timehistory analyses for a suite of ground motion records. Sensitivity analyses on both the IDA and the static pushover level reveal the yield moment and the two rotational-ductility parameters to be the most influential for the frame behavior. To propagate the parametric uncertainty to the actual seismic performance we employ (a) Monte Carlo simulation with latin hypercube sampling, (b) point-estimate and (c) first-order second-moment techniques, thus offering competing methods that represent different compromises between speed and accuracy. The final results provide firm ground for challenging current assumptions in seismic guidelines on using a median-parameter model to estimate the median seismic performance and employing the well-known square-root-sum-of-squares rule to combine aleatory randomness and epistemic uncertainty. Copyright (C) 2009 John Wiley & Sons, Ltd. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
Earthquake Engineering and Structural Dynamics |
en |
dc.identifier.doi |
10.1002/eqe.935 |
en |
dc.identifier.isi |
ISI:000274174700002 |
en |
dc.identifier.volume |
39 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
141 |
en |
dc.identifier.epage |
163 |
en |