dc.contributor.author |
Kominis, Y |
en |
dc.contributor.author |
Ram, AK |
en |
dc.contributor.author |
Hizanidis, K |
en |
dc.date.accessioned |
2014-03-01T01:33:41Z |
|
dc.date.available |
2014-03-01T01:33:41Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0031-9007 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20533 |
|
dc.subject |
Distribution Function |
en |
dc.subject |
Kinetic Theory |
en |
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.subject.other |
Charged particle distribution |
en |
dc.subject.other |
Coherent waves |
en |
dc.subject.other |
Evolution equations |
en |
dc.subject.other |
Evolution operator |
en |
dc.subject.other |
Long-time correlations |
en |
dc.subject.other |
Markovian |
en |
dc.subject.other |
Particle motions |
en |
dc.subject.other |
Phase spaces |
en |
dc.subject.other |
Quasilinear theory |
en |
dc.subject.other |
Regular orbits |
en |
dc.subject.other |
Rich phase |
en |
dc.subject.other |
Time dependent |
en |
dc.subject.other |
Wave-particle interactions |
en |
dc.subject.other |
Biology |
en |
dc.subject.other |
Electromagnetic waves |
en |
dc.subject.other |
Equations of motion |
en |
dc.subject.other |
Kinetic theory |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Phase space methods |
en |
dc.subject.other |
Distribution functions |
en |
dc.title |
Kinetic theory for distribution functions of wave-particle interactions in plasmas |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1103/PhysRevLett.104.235001 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1103/PhysRevLett.104.235001 |
en |
heal.identifier.secondary |
235001 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The evolution of a charged particle distribution function under the influence of coherent electromagnetic waves in a plasma is determined from kinetic theory. For coherent waves, the dynamical phase space of particles is an inhomogeneous mix of chaotic and regular orbits. The persistence of long time correlations between the particle motion and the phase of the waves invalidates any simplifying Markovian or statistical assumptions-the basis for usual quasilinear theories. The generalized formalism in this Letter leads to a hierarchy of evolution equations for the reduced distribution function. The evolution operators, in contrast to the quasilinear theories, are time dependent and nonsingular and include the rich phase space dynamics of particles interacting with coherent waves. © 2010 The American Physical Society. |
en |
heal.publisher |
AMER PHYSICAL SOC |
en |
heal.journalName |
Physical Review Letters |
en |
dc.identifier.doi |
10.1103/PhysRevLett.104.235001 |
en |
dc.identifier.isi |
ISI:000278477600008 |
en |
dc.identifier.volume |
104 |
en |
dc.identifier.issue |
23 |
en |