HEAL DSpace

Large Eddy Simulation of high-Reynolds number flow past a rotating cylinder

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karabelas, SJ en
dc.date.accessioned 2014-03-01T01:33:41Z
dc.date.available 2014-03-01T01:33:41Z
dc.date.issued 2010 en
dc.identifier.issn 0142727X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20536
dc.subject Load stability en
dc.subject Magnus effect en
dc.subject Rotating cylinder en
dc.subject Turbulence en
dc.subject.other Circumferential speed en
dc.subject.other Commercial codes en
dc.subject.other Constant loads en
dc.subject.other Critical value en
dc.subject.other Discretization scheme en
dc.subject.other Experimental data en
dc.subject.other Free-stream en
dc.subject.other High-Reynolds number en
dc.subject.other Karman vortex street en
dc.subject.other Load stability en
dc.subject.other Magnus effect en
dc.subject.other Rotating cylinder en
dc.subject.other Rotating cylinders en
dc.subject.other Smagorinsky model en
dc.subject.other Spin ratio en
dc.subject.other Sub-critical en
dc.subject.other Sub-grid scale models en
dc.subject.other Time units en
dc.subject.other Time-averaged en
dc.subject.other Uniform flow en
dc.subject.other Vortex shedding process en
dc.subject.other Aerodynamics en
dc.subject.other Atmospheric boundary layer en
dc.subject.other Flow simulation en
dc.subject.other Hydraulics en
dc.subject.other Large eddy simulation en
dc.subject.other Reynolds number en
dc.subject.other Rotation en
dc.subject.other Rotors en
dc.subject.other Spin dynamics en
dc.subject.other Turbulence en
dc.subject.other Vortex flow en
dc.subject.other Vortex shedding en
dc.subject.other Cylinders (shapes) en
dc.title Large Eddy Simulation of high-Reynolds number flow past a rotating cylinder en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijheatfluidflow.2010.02.010 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijheatfluidflow.2010.02.010 en
heal.publicationDate 2010 en
heal.abstract In the present study, uniform flow past a rotating cylinder at Re=140,000 is computed based on Large Eddy Simulation (LES). The cylinder rotates with different spin ratios varying from a=0 to a=2, where a is defined as the ratio of the cylinder's circumferential speed to the free-stream speed. The Smagorinsky model is applied to resolve the residual stresses. The present commercial code is validated based on available numerical and experimental data. The results agreed fairly well with these data for the cases of the flow over a stationary and over a rotating cylinder. As the spin ratio increases, the mean drag decreases and the mean cross-stream force acting to the cylinder increases. The vortices (time-averaged) downstream of the cylinder are displaced and deformed and the vortex that is close to the region of the fluid's acceleration shrinks and eventually collapses. By increasing a, the flow is also stabilized. It is observed that the vortex shedding process is suppressed. Specifically, the flow is unstable in load terms for spin ratios up to 1.3. After this critical value, the flow is transitional for a few dimensionless time units demonstrating the well-known von-Karman vortex street and then it becomes stable with almost constant loads. An encouraging outcome resulting from this study is that the LES computations could be accurate for high-Re sub-critical flows with grids of medium resolution combined with a validated sub-grid scale model and a low-diffusive discretization scheme. © 2010 Elsevier Inc. en
heal.journalName International Journal of Heat and Fluid Flow en
dc.identifier.doi 10.1016/j.ijheatfluidflow.2010.02.010 en
dc.identifier.volume 31 en
dc.identifier.issue 4 en
dc.identifier.spage 518 en
dc.identifier.epage 527 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής