dc.contributor.author |
Karantzalos, K |
en |
dc.contributor.author |
Paragios, N |
en |
dc.date.accessioned |
2014-03-01T01:33:41Z |
|
dc.date.available |
2014-03-01T01:33:41Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0196-2892 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20538 |
|
dc.subject |
Level sets |
en |
dc.subject |
Modeling |
en |
dc.subject |
Object detection |
en |
dc.subject |
Recognition |
en |
dc.subject |
Registration |
en |
dc.subject |
Segmentation |
en |
dc.subject |
Variational methods |
en |
dc.subject.classification |
Geochemistry & Geophysics |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Remote Sensing |
en |
dc.subject.other |
Building model |
en |
dc.subject.other |
Building reconstruction |
en |
dc.subject.other |
Digital Elevation Map |
en |
dc.subject.other |
Hierarchical representation |
en |
dc.subject.other |
Integrated approach |
en |
dc.subject.other |
Level Set |
en |
dc.subject.other |
Object Detection |
en |
dc.subject.other |
Observed data |
en |
dc.subject.other |
Optical image |
en |
dc.subject.other |
Quantitative evaluation |
en |
dc.subject.other |
Sensing data |
en |
dc.subject.other |
Variational framework |
en |
dc.subject.other |
Variational methods |
en |
dc.subject.other |
Geometrical optics |
en |
dc.subject.other |
Level measurement |
en |
dc.subject.other |
Remote sensing |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
building |
en |
dc.subject.other |
digital elevation model |
en |
dc.subject.other |
experimental study |
en |
dc.subject.other |
geometry |
en |
dc.subject.other |
reconstruction |
en |
dc.subject.other |
remote sensing |
en |
dc.subject.other |
satellite data |
en |
dc.subject.other |
satellite imagery |
en |
dc.subject.other |
three-dimensional modeling |
en |
dc.title |
Large-scale building reconstruction through information fusion and 3-D priors |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TGRS.2009.2039220 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TGRS.2009.2039220 |
en |
heal.identifier.secondary |
5433051 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this paper, a novel variational framework is introduced toward automatic 3-D building reconstruction from remote-sensing data. We consider a subset of building models that involve the footprint, their elevation, and the roof type. These models, under a certain hierarchical representation, describe the space of solutions and, under a fruitful synergy with an inferential procedure, recover the observed scene's geometry. Such an integrated approach is defined in a variational context, solves segmentation both in optical images and digital elevation maps, and allows multiple competing priors to determine their pose and 3-D geometry from the observed data. The very promising experimental results and the performed quantitative evaluation demonstrate the potentials of our approach. © 2010 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Geoscience and Remote Sensing |
en |
dc.identifier.doi |
10.1109/TGRS.2009.2039220 |
en |
dc.identifier.isi |
ISI:000276814300010 |
en |
dc.identifier.volume |
48 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
2283 |
en |
dc.identifier.epage |
2296 |
en |