dc.contributor.author | Adam, M | en |
dc.contributor.author | Maroulas, J | en |
dc.date.accessioned | 2014-03-01T01:33:42Z | |
dc.date.available | 2014-03-01T01:33:42Z | |
dc.date.issued | 2010 | en |
dc.identifier.issn | 1846-3886 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/20543 | |
dc.relation.uri | http://www.scopus.com/inward/record.url?eid=2-s2.0-77954919595&partnerID=40&md5=333ccd5756713fd3e7c48089458b210a | en |
dc.subject | Compression | en |
dc.subject | Eigenvalue | en |
dc.subject | Numerical range | en |
dc.subject.other | NORMAL COMPRESSION | en |
dc.title | Limited approximation of numerical range of normal matrix | en |
heal.type | journalArticle | en |
heal.language | English | en |
heal.publicationDate | 2010 | en |
heal.abstract | Let A be an n x n normal matrix, whose numerical range NR[A] is a k-polygon. If a unit vector v is an element of W subset of C-n, with dimW = k and the point v*Av is an element of IntNR[A], then NR[A] is circumscribed to NR[P*AP], where P is an n x (k-1) isometry of {span{v}}(W)(perpendicular to) -> C-n, [1]. In this paper, we investigate an internal approximation of NR[ A] by an increasing sequence of NR[C-s] of compressed matrices C-s = R-s*AR(s), with R-s*R-s = Ik+s-1, s = 1,2,..., n - k and additionally NR[A] is expressed as limit of numerical ranges of k-compressions of A. | en |
heal.publisher | ELEMENT | en |
heal.journalName | Operators and Matrices | en |
dc.identifier.isi | ISI:000273612500007 | en |
dc.identifier.volume | 4 | en |
dc.identifier.issue | 1 | en |
dc.identifier.spage | 139 | en |
dc.identifier.epage | 149 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |