dc.contributor.author |
Tsonos, C |
en |
dc.contributor.author |
Kanapitsas, A |
en |
dc.contributor.author |
Triantis, D |
en |
dc.contributor.author |
Anastasiadis, C |
en |
dc.contributor.author |
Stavrakas, I |
en |
dc.contributor.author |
Pissis, P |
en |
dc.date.accessioned |
2014-03-01T01:33:43Z |
|
dc.date.available |
2014-03-01T01:33:43Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
00214922 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20552 |
|
dc.subject |
Dielectric Relaxation |
en |
dc.subject |
Low Temperature |
en |
dc.subject.other |
Arrhenius |
en |
dc.subject.other |
Characteristic value |
en |
dc.subject.other |
Complex frequency |
en |
dc.subject.other |
Davidson |
en |
dc.subject.other |
Defects induced |
en |
dc.subject.other |
Dielectric relaxation spectroscopy |
en |
dc.subject.other |
Dopant impurities |
en |
dc.subject.other |
Electronic process |
en |
dc.subject.other |
Longitudinal optical phonon energies |
en |
dc.subject.other |
Low temperatures |
en |
dc.subject.other |
Native defect |
en |
dc.subject.other |
Temperature rise |
en |
dc.subject.other |
Thermal behaviours |
en |
dc.subject.other |
Thermally activated |
en |
dc.subject.other |
Transition temperature |
en |
dc.subject.other |
ZnO |
en |
dc.subject.other |
ZnO varistors |
en |
dc.subject.other |
Activation energy |
en |
dc.subject.other |
Debye temperature |
en |
dc.subject.other |
Defects |
en |
dc.subject.other |
Dielectric losses |
en |
dc.subject.other |
Dielectric relaxation |
en |
dc.subject.other |
Doping (additives) |
en |
dc.subject.other |
Spectroscopy |
en |
dc.subject.other |
Varistors |
en |
dc.subject.other |
Zinc |
en |
dc.subject.other |
Zinc oxide |
en |
dc.subject.other |
Electron energy loss spectroscopy |
en |
dc.title |
Low temperature dielectric relaxations in ZnO varistor |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1143/JJAP.49.051102 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1143/JJAP.49.051102 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The main purpose of this work is to study the behaviour of ZnO varistor by means of dielectric relaxation spectroscopy at the low temperature range. The complex frequency spectrum of dielectric losses has been studied in detail and analysed carefully by fitting of a sum of Havriliak- Negami expression. Three relaxation processes are studied here, exhibiting a very strong Cole-Davidson behaviour. The faster relaxation process shows an unusual thermal behaviour. Initially, its relaxation time increases as the temperature rises but later it becomes thermally activated. The transition temperature of thermal behaviour of this process was found very close to the characteristic value of 0.4θD = 160 K, where θD is the Debye temperature of ZnO. The de-activation energy of this process has been estimated by using the Arrhenius type relation to be 78 meV, a value very close to the higher longitudinal optical (LO) phonon energy in ZnO, 72 meV. This is a strong indication that the predicted Holstein transition between large to small-polaron motion should be observed in ZnO. The two remaining relaxations are electronic processes, the slower one is associated with the doubly ionised zinc interstitial Zni • •, while the other should be related to defects induced by the dopants, or of complexes of intrinsic native defect with dopant impurities. © 2010 The Japan Society of Applied Physics. |
en |
heal.journalName |
Japanese Journal of Applied Physics |
en |
dc.identifier.doi |
10.1143/JJAP.49.051102 |
en |
dc.identifier.volume |
49 |
en |
dc.identifier.issue |
5 PART 1 |
en |
dc.identifier.spage |
0511021 |
en |
dc.identifier.epage |
0511025 |
en |