dc.contributor.author |
Chremmos, I |
en |
dc.date.accessioned |
2014-03-01T01:33:43Z |
|
dc.date.available |
2014-03-01T01:33:43Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1084-7529 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20554 |
|
dc.subject |
Surface Plasmon |
en |
dc.subject |
Magnetic Field Integral Equation |
en |
dc.subject.classification |
Optics |
en |
dc.subject.other |
Cauchy's residue theorems |
en |
dc.subject.other |
Channel dimension |
en |
dc.subject.other |
Closed-form expression |
en |
dc.subject.other |
Complex analysis |
en |
dc.subject.other |
Fourier |
en |
dc.subject.other |
Magnetic field integral equations |
en |
dc.subject.other |
matrix |
en |
dc.subject.other |
Numerical results |
en |
dc.subject.other |
Plane-wave expansions |
en |
dc.subject.other |
Radiated Field |
en |
dc.subject.other |
Saddlepoint method |
en |
dc.subject.other |
Sensing applications |
en |
dc.subject.other |
Surface plasmon polaritons |
en |
dc.subject.other |
Surface plasmon scattering |
en |
dc.subject.other |
Wavelength Selectivity |
en |
dc.subject.other |
Galerkin methods |
en |
dc.subject.other |
Green's function |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Magnetic fields |
en |
dc.subject.other |
Physical optics |
en |
dc.subject.other |
Plasmons |
en |
dc.subject.other |
Refractive index |
en |
dc.subject.other |
Scattering |
en |
dc.subject.other |
Surface plasmon resonance |
en |
dc.subject.other |
Method of moments |
en |
dc.title |
Magnetic field integral equation analysis of surface plasmon scattering by rectangular dielectric channel discontinuities |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1364/JOSAA.27.000085 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1364/JOSAA.27.000085 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The scattering of a surface plasmon polariton (SPP) by a rectangular dielectric channel discontinuity is analyzed through a rigorous magnetic field integral equation method. The scattering phenomenon is formulated by means of the magnetic-type scalar integral equation, which is subsequently treated through an entire-domain Galerkin method of moments (MoM), based on a Fourier-series plane wave expansion of the magnetic field inside the discontinuity. The use of Green's function Fourier transform allows all integrations over the area and along the boundary of the discontinuity to be performed analytically, resulting in a MoM matrix with entries that are expressed as spectral integrals of closed-form expressions. Complex analysis techniques, such as Cauchy's residue theorem and the saddle-point method, are applied to obtain the amplitudes of the transmitted and reflected SPP modes and the radiated field pattern. Through numerical results, we examine the wavelength selectivity of transmission and reflection against the channel dimensions as well as the sensitivity to changes in the refractive index of the discontinuity, which is useful for sensing applications. (C) 2009 Optical Society of America |
en |
heal.publisher |
OPTICAL SOC AMER |
en |
heal.journalName |
Journal of the Optical Society of America A: Optics and Image Science, and Vision |
en |
dc.identifier.doi |
10.1364/JOSAA.27.000085 |
en |
dc.identifier.isi |
ISI:000273200100012 |
en |
dc.identifier.volume |
27 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
85 |
en |
dc.identifier.epage |
94 |
en |