HEAL DSpace

Metamodel-assisted evolutionary algorithms for the unit commitment problem with probabilistic outages

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgopoulou, CA en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T01:33:43Z
dc.date.available 2014-03-01T01:33:43Z
dc.date.issued 2010 en
dc.identifier.issn 0306-2619 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20561
dc.subject Unit commitment en
dc.subject Probabilistic outages en
dc.subject Metamodels en
dc.subject Two-level evolutionary algorithms en
dc.subject.classification Energy & Fuels en
dc.subject.classification Engineering, Chemical en
dc.subject.other STOCHASTIC OPTIMIZATION en
dc.subject.other CONSTRAINTS en
dc.subject.other SYSTEM en
dc.title Metamodel-assisted evolutionary algorithms for the unit commitment problem with probabilistic outages en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.apenergy.2009.10.013 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.apenergy.2009.10.013 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract An efficient method for solving power generating unit commitment (UC) problems with probabilistic unit outages is proposed. It is based on a two-level evolutionary algorithm (EA) minimizing the expected total operating cost (TOC) of a system of power generating units over a scheduling period, with known failure and repair rates of each unit. To compute the cost function value of each EA population member, namely a candidate UC schedule, a Monte Carlo simulation must be carried out. Some thousands of replicates are generated according to the units' outage and repair rates and the corresponding probabilities. Each replicate is represented by a series of randomly generated availability and unavailability periods of time for each unit and the UC schedule under consideration accordingly. The expected TOC is the average of the TOCs of all Monte Carlo replicates. Therefore, the CPU cost per Monte Carlo evaluation increases noticeably and so does the CPU cost of running the EA. To reduce it, the use of a meta model-assisted EA (MAEA) with on-line trained surrogate evaluation models or metamodels (namely, radial-basis function networks) is proposed. A novelty of this method is that the metamodels are trained on a few "representative" unit outage scenarios selected among the Monte Carlo replicates generated once during the optimization and, then, used to predict the expected TOC Based on this low cost, approximate pre-evaluation, only a few top individuals within each generation undergo Monte Carlo simulations. The proposed MAEA is demonstrated on test problems and shown to drastically reduce the CPU cost, compared to EAs which are exclusively based on Monte Carlo simulations. (C) 2009 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName APPLIED ENERGY en
dc.identifier.doi 10.1016/j.apenergy.2009.10.013 en
dc.identifier.isi ISI:000274943400034 en
dc.identifier.volume 87 en
dc.identifier.issue 5 en
dc.identifier.spage 1782 en
dc.identifier.epage 1792 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής