dc.contributor.author |
Tsakirtzis, S |
en |
dc.contributor.author |
Lee, YS |
en |
dc.contributor.author |
Vakakis, AF |
en |
dc.contributor.author |
Bergman, LA |
en |
dc.contributor.author |
McFarland, DM |
en |
dc.date.accessioned |
2014-03-01T01:33:45Z |
|
dc.date.available |
2014-03-01T01:33:45Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1007-5704 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20575 |
|
dc.subject |
Essential nonlinearity |
en |
dc.subject |
Nonlinear modal interactions |
en |
dc.subject |
System identification |
en |
dc.subject.classification |
Literature, British Isles |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.subject.other |
Dynamical interactions |
en |
dc.subject.other |
Elastic rod |
en |
dc.subject.other |
Empirical mode decomposition |
en |
dc.subject.other |
Essential nonlinearity |
en |
dc.subject.other |
Hilbert transform |
en |
dc.subject.other |
Linear elastic |
en |
dc.subject.other |
Linear oscillator |
en |
dc.subject.other |
Multiscales |
en |
dc.subject.other |
Non-parametric |
en |
dc.subject.other |
Nonlinear modal interactions |
en |
dc.subject.other |
Reduced order models |
en |
dc.subject.other |
Resonant interaction |
en |
dc.subject.other |
Strongly nonlinear |
en |
dc.subject.other |
System identifications |
en |
dc.subject.other |
Transient dynamics |
en |
dc.subject.other |
Transient excitation |
en |
dc.subject.other |
Nonlinear dynamical systems |
en |
dc.subject.other |
Dynamical systems |
en |
dc.title |
Modelling of nonlinear modal interactions in the transient dynamics of an elastic rod with an essentially nonlinear attachment |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.cnsns.2009.10.014 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.cnsns.2009.10.014 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We perform system identification and modelling of the strongly nonlinear modal interactions in a system composed of a linear elastic rod with an essentially nonlinear attachment at its end. Our method is based on slow/fast decomposition of the transient dynamics of the system, combined with empirical mode decomposition (EMD) and Hilbert transforms. The derived reduced order models (ROMs) are in the form of sets of uncoupled linear oscillators (termed intrinsic modal oscillators - IMOs), each corresponding to a basic frequency of the dynamical interaction and forced by transient excitations that represent the nonlinear modal interactions between the rod and the attachment at each of these basic frequencies. A main advantage of our proposed technique is that it is nonparametric and multi-scale, so it is applicable to a broad range of linear as well as nonlinear dynamical systems. Moreover, it is computationally tractable and conceptually meaningful, and it leads to reduced order models of rather simple form that fully capture the basic strongly nonlinear resonant interactions between the subsystems of the problem. (C) 2009 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Communications in Nonlinear Science and Numerical Simulation |
en |
dc.identifier.doi |
10.1016/j.cnsns.2009.10.014 |
en |
dc.identifier.isi |
ISI:000276821300042 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
2617 |
en |
dc.identifier.epage |
2633 |
en |