dc.contributor.author |
Pollatos, E |
en |
dc.contributor.author |
Logakis, E |
en |
dc.contributor.author |
Chatzigeorgiou, P |
en |
dc.contributor.author |
Peoglos, V |
en |
dc.contributor.author |
Zuburtikudis, I |
en |
dc.contributor.author |
Gjoka, M |
en |
dc.contributor.author |
Viras, K |
en |
dc.contributor.author |
Pissis, P |
en |
dc.date.accessioned |
2014-03-01T01:33:45Z |
|
dc.date.available |
2014-03-01T01:33:45Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0022-2348 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20578 |
|
dc.subject |
carbon nanotubes |
en |
dc.subject |
electrical properties |
en |
dc.subject |
morphology |
en |
dc.subject |
nanocomposites |
en |
dc.subject |
syndiotactic polypropylene |
en |
dc.subject |
thermal properties |
en |
dc.subject.classification |
Polymer Science |
en |
dc.subject.other |
Carbon-nanotube composites |
en |
dc.subject.other |
Crystalline form |
en |
dc.subject.other |
Crystallization behavior |
en |
dc.subject.other |
Crystallization temperature |
en |
dc.subject.other |
Degree of crystallinity |
en |
dc.subject.other |
Dielectric relaxation spectroscopy |
en |
dc.subject.other |
Electrical characterization |
en |
dc.subject.other |
Electrical percolation threshold |
en |
dc.subject.other |
electrical properties |
en |
dc.subject.other |
Electrical property |
en |
dc.subject.other |
Glass transition temperature |
en |
dc.subject.other |
Heat capacities |
en |
dc.subject.other |
Isotactics |
en |
dc.subject.other |
matrix |
en |
dc.subject.other |
Melt mixing |
en |
dc.subject.other |
Syndiotactic polypropylene |
en |
dc.subject.other |
Syndiotactics |
en |
dc.subject.other |
Thermal properties |
en |
dc.subject.other |
Carbon nanotubes |
en |
dc.subject.other |
Crystalline materials |
en |
dc.subject.other |
Crystallization |
en |
dc.subject.other |
Differential scanning calorimetry |
en |
dc.subject.other |
Glass transition |
en |
dc.subject.other |
Morphology |
en |
dc.subject.other |
Multiwalled carbon nanotubes (MWCN) |
en |
dc.subject.other |
Nanocomposites |
en |
dc.subject.other |
Polypropylenes |
en |
dc.subject.other |
Raman spectroscopy |
en |
dc.subject.other |
Scanning electron microscopy |
en |
dc.subject.other |
Solvents |
en |
dc.subject.other |
Thermodynamic properties |
en |
dc.subject.other |
Thermoplastics |
en |
dc.subject.other |
X ray diffraction |
en |
dc.subject.other |
Electric properties |
en |
dc.title |
Morphological, thermal, and electrical characterization of syndiotactic polypropylene/multiwalled carbon nanotube composites |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/00222341003609708 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/00222341003609708 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this work, syndiotactic polypropylene/multiwalled carbon nanotubes (MWCNT) nanocomposites, in various concentrations, were produced using melt mixing. The influence of the addition of MWCNT on the morphology, crystalline form, and the thermal and electrical properties of the polymer matrix was studied. To that aim, scanning electron microscopy, Raman spectroscopy, X-ray diffraction, differential scanning calorimetry, and dielectric relaxation spectroscopy were employed. Significant alterations of both the crystallization behavior and the thermal properties of the matrix were found on addition of the carbon nanotubes: conversion of the disordered crystalline form I to the ordered one, increase of the crystallization temperature and the degree of crystallinity, and decrease of the glass transition temperature and the heat capacity jump. Finally, the electrical percolation threshold was found between 2.5-3.0 wt.% MWCNT. For comparison purposes, the results of the system studied here are also correlated with the findings from a previous work on the isotactic polypropylene/MWCNT system. Copyright © 2010 Taylor & Francis Group, LLC. |
en |
heal.publisher |
TAYLOR & FRANCIS INC |
en |
heal.journalName |
Journal of Macromolecular Science, Part B: Physics |
en |
dc.identifier.doi |
10.1080/00222341003609708 |
en |
dc.identifier.isi |
ISI:000280810500019 |
en |
dc.identifier.volume |
49 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
1044 |
en |
dc.identifier.epage |
1056 |
en |