dc.contributor.author |
Katsigiannis, YA |
en |
dc.contributor.author |
Georgilakis, PS |
en |
dc.contributor.author |
Karapidakis, ES |
en |
dc.date.accessioned |
2014-03-01T01:33:46Z |
|
dc.date.available |
2014-03-01T01:33:46Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1752-1416 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20587 |
|
dc.subject |
Environmental Performance |
en |
dc.subject |
multiobjective genetic algorithm |
en |
dc.subject |
Power System |
en |
dc.subject.other |
Conventional power |
en |
dc.subject.other |
Cost of energies |
en |
dc.subject.other |
Economic and environmental performance |
en |
dc.subject.other |
Environmental objectives |
en |
dc.subject.other |
GHG emission |
en |
dc.subject.other |
Hybrid power systems |
en |
dc.subject.other |
Life cycle analysis |
en |
dc.subject.other |
Life cycle emissions |
en |
dc.subject.other |
Local search |
en |
dc.subject.other |
Materials extraction |
en |
dc.subject.other |
Multi-objective genetic algorithm |
en |
dc.subject.other |
Multiobjective optimisation |
en |
dc.subject.other |
Non-dominated sorting genetic algorithms |
en |
dc.subject.other |
Non-linear |
en |
dc.subject.other |
Nondominated solutions |
en |
dc.subject.other |
NSGA-II |
en |
dc.subject.other |
Optimal solutions |
en |
dc.subject.other |
Renewables |
en |
dc.subject.other |
Environmental management |
en |
dc.subject.other |
Extraction |
en |
dc.subject.other |
Gas emissions |
en |
dc.subject.other |
Genetic algorithms |
en |
dc.subject.other |
Global warming |
en |
dc.subject.other |
Greenhouse gases |
en |
dc.subject.other |
Hydrogen storage |
en |
dc.subject.other |
Life cycle |
en |
dc.subject.other |
Multiobjective optimization |
en |
dc.title |
Multiobjective genetic algorithm solution to the optimum economic and environmental performance problem of small autonomous hybrid power systems with renewables |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1049/iet-rpg.2009.0076 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1049/iet-rpg.2009.0076 |
en |
heal.identifier.secondary |
ISETCN000004000005000404000001 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The overall evaluation of small autonomous hybrid power systems (SAHPS) that contain renewable and conventional power sources depends on economic and environmental criteria, which are often conflicting objectives. The solution of this problem belongs to the field of non-linear combinatorial multiobjective optimisation. In a multiobjective optimisation problem, the target is not to find an optimal solution, but a set of non-dominated solutions called Pareto-set. The present article considers as an economic objective the minimisation of system's cost of energy (COE), whereas the environmental objective is the minimisation of the total greenhouse gas (GHG) emissions of the system during its lifetime. The main novelty of this article is that the calculation of GHG emissions is based on life cycle analysis (LCA) of each system's component. In LCA, the whole life cycle emissions of a component are taken into account, from raw materials extraction to final disposal/recycling. This article adopts the non-dominated sorting genetic algorithm (NSGA-II), which in combination with a proposed local search procedure effectively solves the multiobjective optimisation problem of SAHPS. Two main categories of SAHPS are examined with different energy storage: lead-acid batteries and hydrogen storage. The results indicate the superiority of batteries under both economic and environmental criteria. © 2010 The Institution of Engineering and Technology. |
en |
heal.publisher |
INST ENGINEERING TECHNOLOGY-IET |
en |
heal.journalName |
IET Renewable Power Generation |
en |
dc.identifier.doi |
10.1049/iet-rpg.2009.0076 |
en |
dc.identifier.isi |
ISI:000285460800002 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
404 |
en |
dc.identifier.epage |
419 |
en |