dc.contributor.author |
Kavvadias, KC |
en |
dc.contributor.author |
Maroulis, ZB |
en |
dc.date.accessioned |
2014-03-01T01:33:46Z |
|
dc.date.available |
2014-03-01T01:33:46Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0301-4215 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20588 |
|
dc.subject |
Genetic algorithm |
en |
dc.subject |
Operation strategies |
en |
dc.subject |
Pareto |
en |
dc.subject.classification |
Energy & Fuels |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.classification |
Environmental Studies |
en |
dc.subject.other |
Design procedure |
en |
dc.subject.other |
Environmental performance indicators |
en |
dc.subject.other |
Fluctuating energy |
en |
dc.subject.other |
Multi objective evolutionary algorithms |
en |
dc.subject.other |
Operational strategies |
en |
dc.subject.other |
Realistic conditions |
en |
dc.subject.other |
Tri-generation plants |
en |
dc.subject.other |
Trigeneration systems |
en |
dc.subject.other |
Benchmarking |
en |
dc.subject.other |
Construction equipment |
en |
dc.subject.other |
Evolutionary algorithms |
en |
dc.subject.other |
Wireless telecommunication systems |
en |
dc.subject.other |
Multiobjective optimization |
en |
dc.subject.other |
design |
en |
dc.subject.other |
genetic algorithm |
en |
dc.subject.other |
multiobjective programming |
en |
dc.subject.other |
optimization |
en |
dc.subject.other |
power plant |
en |
dc.title |
Multi-objective optimization of a trigeneration plant |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.enpol.2009.10.046 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.enpol.2009.10.046 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
A multi-objective optimization method was developed for the design of trigeneration plants. The optimization is carried out on technical, economical, energetic and environmental performance indicators in a multi-objective optimization framework. Both construction (equipment sizes) and discrete operational (pricing tariff schemes and operational strategy) variables were optimized based on realistic conditions. The problem is solved using a multi-objective evolutionary algorithm. An example of a trigeneration system in a 300 bed hospital was studied in detail in order to demonstrate the design procedure, the economic and energetic performance of the plant, as well as the effectiveness of the proposed approach even under fluctuating energy prices. (C) 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Energy Policy |
en |
dc.identifier.doi |
10.1016/j.enpol.2009.10.046 |
en |
dc.identifier.isi |
ISI:000273985700029 |
en |
dc.identifier.volume |
38 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
945 |
en |
dc.identifier.epage |
954 |
en |