dc.contributor.author |
Kristaly, A |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:33:47Z |
|
dc.date.available |
2014-03-01T01:33:47Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1536-1365 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20591 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-77955874676&partnerID=40&md5=8ecdc1dfe32f1bc07d0e3981dd9d307e |
en |
dc.subject |
Morse theory |
en |
dc.subject |
Multiple solutions. |
en |
dc.subject |
Neumann problem |
en |
dc.subject |
P-Laplacian |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
LOCAL MINIMIZERS |
en |
dc.subject.other |
CRITICAL-POINTS |
en |
dc.subject.other |
EXISTENCE |
en |
dc.subject.other |
OPERATORS |
en |
dc.title |
Multiple nontrivial solutions for neumann problems involving the p-laplacian: A morse theoretical approach |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We consider nonlinear elliptic Neumann problems driven by the p-Laplacian. Using variational techniques together with Morse theory (in particular, critical groups and the Poincaré-Hopf formula), we prove some multiplicity results: either three or four distinct nontrivial solutions are guaranteed, depending on the geometry and smoothness of the nonlinear term. |
en |
heal.publisher |
ADVANCED NONLINEAR STUDIES, INC |
en |
heal.journalName |
Advanced Nonlinear Studies |
en |
dc.identifier.isi |
ISI:000273652000004 |
en |
dc.identifier.volume |
10 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
83 |
en |
dc.identifier.epage |
107 |
en |