dc.contributor.author |
Denkowski, Z |
en |
dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:33:47Z |
|
dc.date.available |
2014-03-01T01:33:47Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0252-9602 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20597 |
|
dc.subject |
34C25 |
en |
dc.subject |
coercive functional |
en |
dc.subject |
critical point |
en |
dc.subject |
generalized subdifferential |
en |
dc.subject |
local linking theorem |
en |
dc.subject |
locally Lipschitz potential |
en |
dc.subject |
multiple nontrivial solutions |
en |
dc.subject |
nonsmooth Palais-Smale condition |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
HAMILTONIAN-SYSTEMS |
en |
dc.title |
Multiple solutions for nonautonomous second order periodic systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0252-9602(10)60051-3 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0252-9602(10)60051-3 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We study nonautonomonus second order periodic systems with a nonsmooth potential. Using the nonsmooth critical theory, we establish the existence of at least two nontrivial solutions. Our framework incorporates large classes of both subquadratic and superquadratic potentials at infinity. © 2010 Wuhan Institute of Physics and Mathematics. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Acta Mathematica Scientia |
en |
dc.identifier.doi |
10.1016/S0252-9602(10)60051-3 |
en |
dc.identifier.isi |
ISI:000274289300035 |
en |
dc.identifier.volume |
30 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
350 |
en |
dc.identifier.epage |
358 |
en |