dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:33:47Z |
|
dc.date.available |
2014-03-01T01:33:47Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1370-1444 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20598 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-77951049529&partnerID=40&md5=75e8a99d124106bf74822cc292c9aac7 |
en |
dc.subject |
Critical groups |
en |
dc.subject |
Multiple solutions |
en |
dc.subject |
Noncoercive functional |
en |
dc.subject |
P-Laplacian |
en |
dc.subject |
Poincaré-Hopf formula |
en |
dc.subject |
Principal eigenvalue |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
LINEAR ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
EXISTENCE |
en |
dc.subject.other |
PRINCIPLE |
en |
dc.title |
Multiple solutions for noncoercive problems with the p-Laplacian |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We consider a nonlinear elliptic equation driven by the p-Laplacian and with a Caratheodory right hand side nonlinearity which exhibits an asymmetric asymptotic behaviour at +infinity and at -infinity These hypotheses imply that the Euler functional of the problem is noncoercive (indefinite) Using critical point theory, we prove the existence of at least two nontrivial smooth solutions Also in the last section for the asymmetric functionals considered here, we compute the critical groups at infinity |
en |
heal.publisher |
BELGIAN MATHEMATICAL SOC TRIOMPHE |
en |
heal.journalName |
Bulletin of the Belgian Mathematical Society - Simon Stevin |
en |
dc.identifier.isi |
ISI:000276755200006 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
83 |
en |
dc.identifier.epage |
99 |
en |