dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Smyrlis, G |
en |
dc.date.accessioned |
2014-03-01T01:33:47Z |
|
dc.date.available |
2014-03-01T01:33:47Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0951-7715 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20599 |
|
dc.subject |
Multiple Solution |
en |
dc.subject |
Neumann Problem |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.subject.other |
ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
CRITICAL-POINTS |
en |
dc.subject.other |
EXISTENCE |
en |
dc.subject.other |
PRINCIPLE |
en |
dc.subject.other |
FORMULA |
en |
dc.title |
Multiple solutions for nonlinear Neumann problems with the p-Laplacian and a nonsmooth crossing potential |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0951-7715/23/3/005 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0951-7715/23/3/005 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We consider a nonlinear Neumann problem driven by the p-Laplace differential operator and with a nonsmooth locally Lipschitz potential (hemivariational inequality). We assume that the potential is asymptotically p-linear and crossing. Combining the nonsmooth critical point theory with suitable truncation and perturbation techniques, we show that the problem has at least two nontrivial smooth solutions, of which one is strictly positive. © 2010 IOP Publishing Ltd and London Mathematical Society. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Nonlinearity |
en |
dc.identifier.doi |
10.1088/0951-7715/23/3/005 |
en |
dc.identifier.isi |
ISI:000274429900005 |
en |
dc.identifier.volume |
23 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
529 |
en |
dc.identifier.epage |
548 |
en |