dc.contributor.author |
Motreanu, D |
en |
dc.contributor.author |
Motreanu, VV |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:33:48Z |
|
dc.date.available |
2014-03-01T01:33:48Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1021-9722 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20600 |
|
dc.subject |
Homotopy |
en |
dc.subject |
Morse theory |
en |
dc.subject |
Resonant problem |
en |
dc.subject |
Scalar p-Laplacian |
en |
dc.subject |
Solutions of constant sign |
en |
dc.subject |
Truncation |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
P-LAPLACIAN |
en |
dc.subject.other |
ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
FUCIK SPECTRUM |
en |
dc.subject.other |
EXISTENCE |
en |
dc.title |
Multiple solutions for resonant nonlinear periodic equations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00030-010-0067-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00030-010-0067-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We consider a nonlinear periodic problem driven by the scalar p-Laplacian, with an asymptotically (p-1)-linear nonlinearity. We permit resonance with respect to the second positive eigenvalue of the negative periodic scalar p-Laplacian and we assume nonuniform nonresonance with respect to the first positive eigenvalue. Using a combination of variational methods, with truncation techniques and Morse theory, we show that the problem has at least three nontrivial solutions. © 2010 Birkhäuser / Springer Basel AG. |
en |
heal.publisher |
BIRKHAUSER VERLAG AG |
en |
heal.journalName |
Nonlinear Differential Equations and Applications |
en |
dc.identifier.doi |
10.1007/s00030-010-0067-0 |
en |
dc.identifier.isi |
ISI:000282182600002 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
535 |
en |
dc.identifier.epage |
557 |
en |