dc.contributor.author |
Spiliotis, KG |
en |
dc.contributor.author |
Siettos, CI |
en |
dc.date.accessioned |
2014-03-01T01:33:48Z |
|
dc.date.available |
2014-03-01T01:33:48Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0218-1274 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20603 |
|
dc.subject |
Bifurcation analysis |
en |
dc.subject |
Equation-free approach |
en |
dc.subject |
Multiscale computations |
en |
dc.subject |
Neural networks |
en |
dc.subject |
Rare-events analysis |
en |
dc.subject |
Simulated annealing |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Multidisciplinary Sciences |
en |
dc.subject.other |
Bifurcation analysis |
en |
dc.subject.other |
Bifurcation diagram |
en |
dc.subject.other |
Black boxes |
en |
dc.subject.other |
Coarse-grained |
en |
dc.subject.other |
Connected graph |
en |
dc.subject.other |
Equation-Free |
en |
dc.subject.other |
Individual-based |
en |
dc.subject.other |
Macroscopic levels |
en |
dc.subject.other |
Multiscale computation |
en |
dc.subject.other |
Multiscale computations |
en |
dc.subject.other |
Neural interactions |
en |
dc.subject.other |
Stationary state |
en |
dc.subject.other |
Timestepper |
en |
dc.subject.other |
Annealing |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Probability density function |
en |
dc.subject.other |
Simulated annealing |
en |
dc.title |
Multiscale computations on neural networks: From the individual neuron interactions to the macroscopic-level analysis |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1142/S0218127410025442 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1142/S0218127410025442 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We show how the Equation-Free approach for multiscale computations can be exploited to systematically study the dynamics of neural interactions on a random regular connected graph under a pairwise representation perspective. Using an individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of Simulated Annealing we compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states, sidestepping the necessity of obtaining explicit closures at the macroscopic level. We also exploit the scheme to perform a rare-events analysis by estimating an effective FokkerPlanck equation describing the evolving probability density function of the corresponding coarse-grained observables. © 2010 World Scientific Publishing Company. |
en |
heal.publisher |
WORLD SCIENTIFIC PUBL CO PTE LTD |
en |
heal.journalName |
International Journal of Bifurcation and Chaos |
en |
dc.identifier.doi |
10.1142/S0218127410025442 |
en |
dc.identifier.isi |
ISI:000275981100008 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
121 |
en |
dc.identifier.epage |
134 |
en |