dc.contributor.author |
Aziz, K |
en |
dc.contributor.author |
Nowsheen, S |
en |
dc.contributor.author |
Georgakilas, AG |
en |
dc.date.accessioned |
2014-03-01T01:33:49Z |
|
dc.date.available |
2014-03-01T01:33:49Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1566-5240 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20607 |
|
dc.subject |
Base excision repair |
en |
dc.subject |
Cancer therapy |
en |
dc.subject |
DNA damage |
en |
dc.subject |
DNA repair |
en |
dc.subject |
Double strand break repair |
en |
dc.subject |
Inhibitors |
en |
dc.subject |
Nanotechnology |
en |
dc.subject.classification |
Medicine, Research & Experimental |
en |
dc.subject.other |
2 (2 methyl 2 pyrrolidinyl) 1h benzimidazole 4 carboxamide |
en |
dc.subject.other |
5 aza 2' deoxycytidine |
en |
dc.subject.other |
antineoplastic agent |
en |
dc.subject.other |
bsi 201 |
en |
dc.subject.other |
captopril |
en |
dc.subject.other |
carboplatin |
en |
dc.subject.other |
cetuximab |
en |
dc.subject.other |
cisplatin |
en |
dc.subject.other |
gemcitabine |
en |
dc.subject.other |
irinotecan |
en |
dc.subject.other |
lithium |
en |
dc.subject.other |
olaparib |
en |
dc.subject.other |
pemetrexed |
en |
dc.subject.other |
temozolomide |
en |
dc.subject.other |
trc 102 |
en |
dc.subject.other |
unclassified drug |
en |
dc.subject.other |
article |
en |
dc.subject.other |
brain tumor |
en |
dc.subject.other |
breast cancer |
en |
dc.subject.other |
cancer genetics |
en |
dc.subject.other |
cancer therapy |
en |
dc.subject.other |
carcinogenesis |
en |
dc.subject.other |
colorectal cancer |
en |
dc.subject.other |
DNA damage |
en |
dc.subject.other |
DNA repair |
en |
dc.subject.other |
DNA strand breakage |
en |
dc.subject.other |
drug efficacy |
en |
dc.subject.other |
drug safety |
en |
dc.subject.other |
excision repair |
en |
dc.subject.other |
gene mutation |
en |
dc.subject.other |
gene sequence |
en |
dc.subject.other |
gene targeting |
en |
dc.subject.other |
genetic association |
en |
dc.subject.other |
genetic disorder |
en |
dc.subject.other |
genetic predisposition |
en |
dc.subject.other |
glioblastoma |
en |
dc.subject.other |
human |
en |
dc.subject.other |
intestine cancer |
en |
dc.subject.other |
leukemia |
en |
dc.subject.other |
lung cancer |
en |
dc.subject.other |
lymphoma |
en |
dc.subject.other |
melanoma |
en |
dc.subject.other |
nanotechnology |
en |
dc.subject.other |
ovary cancer |
en |
dc.subject.other |
pharmacodynamics |
en |
dc.subject.other |
solid tumor |
en |
dc.subject.other |
urogenital tract tumor |
en |
dc.subject.other |
Antineoplastic Agents |
en |
dc.subject.other |
DNA Damage |
en |
dc.subject.other |
DNA Repair |
en |
dc.subject.other |
DNA Repair Enzymes |
en |
dc.subject.other |
Drug Design |
en |
dc.subject.other |
Enzyme Inhibitors |
en |
dc.subject.other |
Molecular Targeted Therapy |
en |
dc.subject.other |
Nanomedicine |
en |
dc.subject.other |
Neoplasms |
en |
dc.subject.other |
Poly(ADP-ribose) Polymerases |
en |
dc.subject.other |
Radiation, Ionizing |
en |
dc.subject.other |
Radiation, Nonionizing |
en |
dc.subject.other |
Reactive Nitrogen Species |
en |
dc.subject.other |
Reactive Oxygen Species |
en |
dc.title |
Nanotechnology in cancer therapy: Targeting the inhibition of key DNA repair pathways |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.2174/156652410792630599 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.2174/156652410792630599 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Cancer therapy has been changing over the decades as we move away from the administration of broad spectrum cytotoxic drugs and towards the use of therapy targeted for each tumor type. After the induction of DNA damage through chemotherapeutic agents, tumor cells can survive due to their proficient DNA repair pathways, some of which are dysregulated in cancer. Latest improvements in nanotechnology and drug discovery have led to the discovery of some very unique, highly specific and innovative drugs as inhibitors of various DNA repair pathways like base excision repair and double strand break repair. In this review we look at the efficacy and potency of these small chemical molecules to target the processing of DNA damage induced by standard therapeutic agents. Emphasis is given to those drugs currently under clinical trials. We also discuss the future directions of using this nanotechnology to increase the therapeutic ratio in cancer treatment. © 2010 Bentham Science Publishers Ltd. |
en |
heal.publisher |
BENTHAM SCIENCE PUBL LTD |
en |
heal.journalName |
Current Molecular Medicine |
en |
dc.identifier.doi |
10.2174/156652410792630599 |
en |
dc.identifier.isi |
ISI:000284622700002 |
en |
dc.identifier.volume |
10 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
626 |
en |
dc.identifier.epage |
639 |
en |