dc.contributor.author |
Alexopoulos, LG |
en |
dc.contributor.author |
Saez-Rodriguez, J |
en |
dc.contributor.author |
Cosgrove, BD |
en |
dc.contributor.author |
Lauffenburger, DA |
en |
dc.contributor.author |
Sorger, PK |
en |
dc.date.accessioned |
2014-03-01T01:33:51Z |
|
dc.date.available |
2014-03-01T01:33:51Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
15359476 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20609 |
|
dc.subject |
Network Inference |
en |
dc.subject |
Toll Like Receptor |
en |
dc.subject.other |
chemokine |
en |
dc.subject.other |
cyclic AMP responsive element binding protein |
en |
dc.subject.other |
cytokine |
en |
dc.subject.other |
gamma interferon |
en |
dc.subject.other |
glycogen synthase kinase 3 |
en |
dc.subject.other |
heat shock protein 27 |
en |
dc.subject.other |
I kappa B |
en |
dc.subject.other |
immunoglobulin enhancer binding protein |
en |
dc.subject.other |
insulin receptor substrate 1 |
en |
dc.subject.other |
interleukin 1alpha |
en |
dc.subject.other |
interleukin 6 |
en |
dc.subject.other |
mitogen activated protein kinase 1 |
en |
dc.subject.other |
mitogen activated protein kinase 3 |
en |
dc.subject.other |
mitogen activated protein kinase kinase 1 |
en |
dc.subject.other |
mitogen activated protein kinase p38 |
en |
dc.subject.other |
protein kinase B |
en |
dc.subject.other |
protein p53 |
en |
dc.subject.other |
somatomedin C |
en |
dc.subject.other |
STAT3 protein |
en |
dc.subject.other |
STAT6 protein |
en |
dc.subject.other |
stress activated protein kinase |
en |
dc.subject.other |
toll like receptor |
en |
dc.subject.other |
tumor necrosis factor alpha |
en |
dc.subject.other |
article |
en |
dc.subject.other |
cancer cell culture |
en |
dc.subject.other |
cell proliferation |
en |
dc.subject.other |
cell transformation |
en |
dc.subject.other |
cell type |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
cytokine release |
en |
dc.subject.other |
down regulation |
en |
dc.subject.other |
human |
en |
dc.subject.other |
human cell |
en |
dc.subject.other |
immune response |
en |
dc.subject.other |
immunocompetent cell |
en |
dc.subject.other |
inflammation |
en |
dc.subject.other |
innate immunity |
en |
dc.subject.other |
liver cell |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
proteomics |
en |
dc.subject.other |
signal transduction |
en |
dc.subject.other |
Cell Line, Transformed |
en |
dc.subject.other |
Hepatocytes |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Inflammation |
en |
dc.subject.other |
Ligands |
en |
dc.subject.other |
NF-kappa B |
en |
dc.subject.other |
Signal Transduction |
en |
dc.subject.other |
Toll-Like Receptors |
en |
dc.title |
Networks inferred from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between normal and transformed hepatocytes |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1074/mcp.M110.000406 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1074/mcp.M110.000406 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Systematic study of cell signaling networks increasingly involves high throughput proteomics, transcriptional profiling, and automated literature mining with the aim of assembling large scale interaction networks. In contrast, functional analysis of cell signaling usually focuses on a much smaller sets of proteins and eschews computation but focuses directly on cellular responses to environment and perturbation. We sought to combine these two traditions by collecting cell response measures on a reasonably large scale and then attempting to infer differences in network topology between two cell types. Human hepatocytes and hepatocellular carcinoma cell lines were exposed to inducers of inflammation, innate immunity, and proliferation in the presence and absence of small molecule drugs, and multiplex biochemical measurement was then performed on intra- and extracellular signaling molecules. We uncovered major differences between primary and transformed hepatocytes with respect to the engagement of toll-like receptor and NF-κB-dependent secretion of chemokines and cytokines that prime and attract immune cells. Overall, our results serve as a proof of principle for an approach to network analysis that is systematic, comparative, and biochemically focused. More specifically, our data support the hypothesis that hepatocellular carcinoma cells down-regulate normal inflammatory and immune responses to avoid immune editing. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc. |
en |
heal.journalName |
Molecular and Cellular Proteomics |
en |
dc.identifier.doi |
10.1074/mcp.M110.000406 |
en |
dc.identifier.volume |
9 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
1849 |
en |
dc.identifier.epage |
1865 |
en |