HEAL DSpace

Neurocomputing strategies for solving reliability-robust design optimization problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lagaros, ND en
dc.contributor.author Plevris, V en
dc.contributor.author Papadrakakis, M en
dc.date.accessioned 2014-03-01T01:33:53Z
dc.date.available 2014-03-01T01:33:53Z
dc.date.issued 2010 en
dc.identifier.issn 0264-4401 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20610
dc.subject Neural nets en
dc.subject Optimization techniques en
dc.subject Structural design en
dc.subject Structural engineering en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Applied loading en
dc.subject.other Combined reliability en
dc.subject.other Computational costs en
dc.subject.other Computational time en
dc.subject.other Construction costs en
dc.subject.other Cross section en
dc.subject.other Four-order en
dc.subject.other Low probability en
dc.subject.other Modulus of elasticity en
dc.subject.other Monte Carlo simulation methods en
dc.subject.other Multi-objective optimization problem en
dc.subject.other Network prediction en
dc.subject.other Neural net en
dc.subject.other Neurocomputing en
dc.subject.other Numerical results en
dc.subject.other Optimization problems en
dc.subject.other Optimization techniques en
dc.subject.other Probabilistic analysis en
dc.subject.other Probabilistic constraints en
dc.subject.other Real-world en
dc.subject.other Robust design optimization en
dc.subject.other Standard deviation en
dc.subject.other Structural engineering en
dc.subject.other Structural response en
dc.subject.other Structural systems en
dc.subject.other Computer simulation en
dc.subject.other Monte Carlo methods en
dc.subject.other Multiobjective optimization en
dc.subject.other Neural networks en
dc.subject.other Quality assurance en
dc.subject.other Random variables en
dc.subject.other Reliability en
dc.subject.other Shape optimization en
dc.subject.other Stress analysis en
dc.subject.other Structural design en
dc.subject.other Yield stress en
dc.subject.other Structural optimization en
dc.title Neurocomputing strategies for solving reliability-robust design optimization problems en
heal.type journalArticle en
heal.identifier.primary 10.1108/02644401011073674 en
heal.identifier.secondary http://dx.doi.org/10.1108/02644401011073674 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract Purpose - This paper, by taking randomness and uncertainty of structural systems into account aims to implement a combined reliability-based robust design optimization (RRDO) formulation. The random variables to be considered include the cross section dimensions, modulus of elasticity, yield stress, and applied loading. The RRDO problem is to be formulated as a multi-objective optimization problem where the construction cost and the standard deviation of the structural response are the objectives to be minimized. Design/methodology/ approach - The solution of the optimization problem is performed with the non-dominant cascade evolutionary algorithm with the weighted Tchebycheff metric, while the probabilistic analysis required is carried out with the Monte Carlo simulation method. Despite the computational advances, the solution of a RRDO problem for real-world structures is extremely computationally demanding and for this reason neurocomputing estimations are implemented. Findings - The obtained estimates with the neural network predictions are shown to be very satisfactory in terms of accuracy for performing this type of computation. Furthermore, the present numerical results manage to achieve a reduction in computational time up to four orders of magnitude, for low probabilities of violation, compared to the conventional procedure making thus feasible the reliability-robust design optimization of realistic structures under probabilistic constraints. Originality/value - The novel parts of the present work include the implementation of neurocomputing strategies in RRDO problems for reducing the computational cost and the comparison of the results given by RRDO and robust design optimization formulations, where the significance of taking into account probabilistic constraints is emphasized. © Emerald Group Publishing Limited. en
heal.publisher EMERALD GROUP PUBLISHING LIMITED en
heal.journalName Engineering Computations (Swansea, Wales) en
dc.identifier.doi 10.1108/02644401011073674 en
dc.identifier.isi ISI:000286569400003 en
dc.identifier.volume 27 en
dc.identifier.issue 7 en
dc.identifier.spage 819 en
dc.identifier.epage 840 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής