dc.contributor.author |
Cakoni, F |
en |
dc.contributor.author |
Gintides, D |
en |
dc.date.accessioned |
2014-03-01T01:33:55Z |
|
dc.date.available |
2014-03-01T01:33:55Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1930-8337 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20617 |
|
dc.subject |
Inhomogeneous medium |
en |
dc.subject |
Interior transmission problem |
en |
dc.subject |
Inverse scattering problem |
en |
dc.subject |
Transmission eigenvalues |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.subject.other |
INHOMOGENEOUS-MEDIUM |
en |
dc.subject.other |
EXISTENCE |
en |
dc.subject.other |
MEDIA |
en |
dc.title |
New results on transmission eigenvalues |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.3934/ipi.2010.4.39 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.3934/ipi.2010.4.39 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We consider the interior transmission eigenvalue problem corresponding to the inverse scattering problem for an isotropic inhomogeneous medium. We first prove that transmission eigenvalues exist for media with index of refraction greater or less than one without assuming that the contrast is sufficiently large. Then we show that for an arbitrary Lipshitz domain with constant index of refraction there exists an infinite discrete set of transmission eigenvalues that accumulate at infinity. Finally, for the general case of non constant index of refraction we provide a lower and an upper bound for the first transmission eigenvalue in terms of the first transmission eigenvalue for appropriate balls with constant index of refraction. © 2010 American Institute of Mathematical Sciences. |
en |
heal.publisher |
AMER INST MATHEMATICAL SCIENCES |
en |
heal.journalName |
Inverse Problems and Imaging |
en |
dc.identifier.doi |
10.3934/ipi.2010.4.39 |
en |
dc.identifier.isi |
ISI:000276414600004 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
39 |
en |
dc.identifier.epage |
48 |
en |