dc.contributor.author |
Tsiatas, GC |
en |
dc.date.accessioned |
2014-03-01T01:33:55Z |
|
dc.date.available |
2014-03-01T01:33:55Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0001-5970 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20620 |
|
dc.subject |
Boundary Condition |
en |
dc.subject |
Boundary Integral Equation |
en |
dc.subject |
Cross Section |
en |
dc.subject |
Load Distribution |
en |
dc.subject |
Nonlinear Analysis |
en |
dc.subject |
Nonlinear Boundary Condition |
en |
dc.subject |
Nonlinear Differential Equation |
en |
dc.subject |
Nonlinear Elasticity |
en |
dc.subject |
Nonlinear Problem |
en |
dc.subject |
Nonlinear Response |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Analog equation methods |
en |
dc.subject.other |
Coupled nonlinear differential equations |
en |
dc.subject.other |
Elastic foundation |
en |
dc.subject.other |
Governing equations |
en |
dc.subject.other |
Linear analysis |
en |
dc.subject.other |
Load distributions |
en |
dc.subject.other |
Mathematical problems |
en |
dc.subject.other |
Non-linear boundary conditions |
en |
dc.subject.other |
Non-linear response |
en |
dc.subject.other |
Nonlinear elastic foundation |
en |
dc.subject.other |
Nonlinear problems |
en |
dc.subject.other |
Nonuniform beam |
en |
dc.subject.other |
Pasternak |
en |
dc.subject.other |
Variable coefficients |
en |
dc.subject.other |
Winkler |
en |
dc.subject.other |
Beams and girders |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Boundary integral equations |
en |
dc.subject.other |
Foundations |
en |
dc.subject.other |
Linearization |
en |
dc.subject.other |
Nonlinear analysis |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.title |
Nonlinear analysis of non-uniform beams on nonlinear elastic foundation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00707-009-0174-3 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00707-009-0174-3 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this paper a boundary integral equation solution to the nonlinear problem of non-uniform beams resting on a nonlinear triparametric elastic foundation is presented, which permits also the treatment of nonlinear boundary conditions. The nonlinear subgrade model which describes the foundation includes the linear and nonlinear Winkler (normal) parameters and the linear Pasternak (shear) foundation parameter. The governing equations are derived in terms of the displacements for nonlinear analysis in the deformed configuration and for linear analysis in the undeformed one. Moreover, as the cross-sectional properties of the beam vary along its axis, the resulting coupled nonlinear differential equations have variable coefficients which complicate the mathematical problem even more. Their solution is achieved using the analog equation method of Katsikadelis. Several beams are analyzed under various boundary conditions and load distributions, which illustrate the method and demonstrate its efficiency and accuracy. Finally, useful conclusions are drawn from the investigation of the nonlinear response of non-uniform beams resting on nonlinear elastic foundation. © Springer-Verlag 2009. |
en |
heal.publisher |
SPRINGER WIEN |
en |
heal.journalName |
Acta Mechanica |
en |
dc.identifier.doi |
10.1007/s00707-009-0174-3 |
en |
dc.identifier.isi |
ISI:000271024800011 |
en |
dc.identifier.volume |
209 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
141 |
en |
dc.identifier.epage |
152 |
en |