dc.contributor.author |
Sapountzakis, EJ |
en |
dc.contributor.author |
Tsipiras, VJ |
en |
dc.date.accessioned |
2014-03-01T01:33:56Z |
|
dc.date.available |
2014-03-01T01:33:56Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0020-7462 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20623 |
|
dc.subject |
Bar |
en |
dc.subject |
Beam |
en |
dc.subject |
Boundary-element method |
en |
dc.subject |
Non-linear analysis |
en |
dc.subject |
Non-uniform torsion |
en |
dc.subject |
Shear center |
en |
dc.subject |
Shear stresses |
en |
dc.subject |
Twist |
en |
dc.subject |
Wagner strain |
en |
dc.subject |
Warping |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Analog equation methods |
en |
dc.subject.other |
Arbitrary cross section |
en |
dc.subject.other |
Beam axis |
en |
dc.subject.other |
Cylindrical bars |
en |
dc.subject.other |
Domain discretization |
en |
dc.subject.other |
Element method |
en |
dc.subject.other |
Geometric non-linear |
en |
dc.subject.other |
Geometric non-linearity |
en |
dc.subject.other |
Iterative process |
en |
dc.subject.other |
Large rotation |
en |
dc.subject.other |
Longitudinal normal |
en |
dc.subject.other |
Non-linear |
en |
dc.subject.other |
Non-uniform torsion |
en |
dc.subject.other |
Nonuniform |
en |
dc.subject.other |
Numerical results |
en |
dc.subject.other |
Saint-Venant |
en |
dc.subject.other |
Second orders |
en |
dc.subject.other |
Shear center |
en |
dc.subject.other |
Torsional constant |
en |
dc.subject.other |
Torsional rigidity |
en |
dc.subject.other |
Transverse displacements |
en |
dc.subject.other |
Warping function |
en |
dc.subject.other |
Binary codes |
en |
dc.subject.other |
Discrete event simulation |
en |
dc.subject.other |
Rigidity |
en |
dc.subject.other |
Rotation |
en |
dc.subject.other |
Sailing vessels |
en |
dc.subject.other |
Shear stress |
en |
dc.subject.other |
Strain |
en |
dc.subject.other |
Strength of materials |
en |
dc.subject.other |
Thin walled structures |
en |
dc.subject.other |
Torsional stress |
en |
dc.subject.other |
Weaving |
en |
dc.subject.other |
Boundary element method |
en |
dc.title |
Non-linear elastic non-uniform torsion of bars of arbitrary cross-section by BEM |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ijnonlinmec.2009.09.003 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ijnonlinmec.2009.09.003 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this paper an elastic non-uniform torsion analysis of simply or multiply connected cylindrical bars of arbitrary cross-section taking into account the effect of geometric non-linearity is presented employing the boundary-element(BE) method. The torque-rotation relationship is computed based on the finite-displacement (finite-rotation) theory, that is the transverse displacement components are expressed so as to be valid for large rotations and the longitudinal normal strain includes the second-order geometric non-linear term often described as the ""Wagner strain"". The proposed formulation does not stand on the assumption of a thin-walled structure and therefore the cross-section's torsional rigidity is evaluated exactly without using the so-called Saint-Venant's torsional constant. The torsional rigidity of the cross-section is evaluated directly employing the primary warping function of the cross-section depending on its shape. Three boundary-value problems with respect to the variable along the beam axis angle of twist, to the primary and to the secondary warping functions are formulated. The first one, employing the Analog Equation Method (a BEM-based method), yields a system of non-linear equations from which the angle of twist is computed by an iterative process. The remaining two problems are solved employing a pure BE method. Numerical results are presented to illustrate the method and demonstrate its efficiency and accuracy. The developed procedure retains most of the advantages of a BEM solution over a pure domain discretization method, although it requires domain discretization. © 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Non-Linear Mechanics |
en |
dc.identifier.doi |
10.1016/j.ijnonlinmec.2009.09.003 |
en |
dc.identifier.isi |
ISI:000273548000007 |
en |
dc.identifier.volume |
45 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
63 |
en |
dc.identifier.epage |
74 |
en |