HEAL DSpace

Nonlinear nonuniform torsional vibrations of bars by the boundary element method

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sapountzakis, EJ en
dc.contributor.author Tsipiras, VJ en
dc.date.accessioned 2014-03-01T01:33:56Z
dc.date.available 2014-03-01T01:33:56Z
dc.date.issued 2010 en
dc.identifier.issn 0022-460X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20624
dc.subject Boundary Condition en
dc.subject Boundary Element Method en
dc.subject Cross Section en
dc.subject Differential Algebraic Equation en
dc.subject Differential Equation en
dc.subject Free Vibration en
dc.subject Generalized Eigenvalue Problem en
dc.subject Initial Boundary Value Problem en
dc.subject Model System en
dc.subject Numerical Solution en
dc.subject time discretization en
dc.subject Vibration Analysis en
dc.subject.classification Acoustics en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Analog equation methods en
dc.subject.other Axial displacements en
dc.subject.other Axial inertia en
dc.subject.other Coupling effect en
dc.subject.other Differential algebraic equations en
dc.subject.other Direct iteration techniques en
dc.subject.other Finite displacement en
dc.subject.other Free vibration en
dc.subject.other Fundamental modes en
dc.subject.other Generalized eigenvalue problems en
dc.subject.other Geometrical non-linearity en
dc.subject.other Governing differential equations en
dc.subject.other Initial-boundary value problems en
dc.subject.other Mass models en
dc.subject.other Nonlinear initial-boundary value problems en
dc.subject.other Nonuniform en
dc.subject.other Numerical solution en
dc.subject.other Small strains en
dc.subject.other Starting vectors en
dc.subject.other Time discretization en
dc.subject.other Torsional vibration en
dc.subject.other Torsional vibration analysis en
dc.subject.other Transverse displacements en
dc.subject.other Algebra en
dc.subject.other Beams and girders en
dc.subject.other Boundary conditions en
dc.subject.other Control nonlinearities en
dc.subject.other Differentiation (calculus) en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Elastic waves en
dc.subject.other Equations of motion en
dc.subject.other Machine vibrations en
dc.subject.other Nonlinear equations en
dc.subject.other Vibration analysis en
dc.subject.other Weaving en
dc.subject.other Boundary element method en
dc.title Nonlinear nonuniform torsional vibrations of bars by the boundary element method en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jsv.2009.11.035 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jsv.2009.11.035 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of arbitrary doubly symmetric constant cross-section taking into account the effect of geometrical nonlinearity. The bar is subjected to arbitrarily distributed or concentrated conservative dynamic twisting and warping moments along its length, while its edges are supported by the most general torsional boundary conditions. The transverse displacement components are expressed so as to be valid for large twisting rotations (finite displacement-small strain theory), thus the arising governing differential equations and boundary conditions are in general nonlinear. The resulting coupling effect between twisting and axial displacement components is considered and torsional vibration analysis is performed in both the torsional pre- or post-buckled state. A distributed mass model system is employed, taking into account the warping, rotatory and axial inertia, leading to the formulation of a coupled nonlinear initial boundary value problem with respect to the variable along the bar angle of twist and to an ""average"" axial displacement of the cross-section of the bar. The numerical solution of the aforementioned initial boundary value problem is performed using the analog equation method, a BEM based method, leading to a system of nonlinear differential-algebraic equations (DAE), which is solved using an efficient time discretization scheme. Additionally, for the free vibrations case, a nonlinear generalized eigenvalue problem is formulated with respect to the fundamental mode shape at the points of reversal of motion after ignoring the axial inertia to verify the accuracy of the proposed method. The problem is solved using the direct iteration technique (DIT), with a geometrically linear fundamental mode shape as a starting vector. The validity of negligible axial inertia assumption is examined for the problem at hand. © 2009 Elsevier Ltd. All rights reserved. en
heal.publisher ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD en
heal.journalName Journal of Sound and Vibration en
dc.identifier.doi 10.1016/j.jsv.2009.11.035 en
dc.identifier.isi ISI:000274926800016 en
dc.identifier.volume 329 en
dc.identifier.issue 10 en
dc.identifier.spage 1853 en
dc.identifier.epage 1874 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής