dc.contributor.author |
Sapountzakis, EJ |
en |
dc.contributor.author |
Tsipiras, VJ |
en |
dc.date.accessioned |
2014-03-01T01:33:56Z |
|
dc.date.available |
2014-03-01T01:33:56Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0022-460X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20624 |
|
dc.subject |
Boundary Condition |
en |
dc.subject |
Boundary Element Method |
en |
dc.subject |
Cross Section |
en |
dc.subject |
Differential Algebraic Equation |
en |
dc.subject |
Differential Equation |
en |
dc.subject |
Free Vibration |
en |
dc.subject |
Generalized Eigenvalue Problem |
en |
dc.subject |
Initial Boundary Value Problem |
en |
dc.subject |
Model System |
en |
dc.subject |
Numerical Solution |
en |
dc.subject |
time discretization |
en |
dc.subject |
Vibration Analysis |
en |
dc.subject.classification |
Acoustics |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Analog equation methods |
en |
dc.subject.other |
Axial displacements |
en |
dc.subject.other |
Axial inertia |
en |
dc.subject.other |
Coupling effect |
en |
dc.subject.other |
Differential algebraic equations |
en |
dc.subject.other |
Direct iteration techniques |
en |
dc.subject.other |
Finite displacement |
en |
dc.subject.other |
Free vibration |
en |
dc.subject.other |
Fundamental modes |
en |
dc.subject.other |
Generalized eigenvalue problems |
en |
dc.subject.other |
Geometrical non-linearity |
en |
dc.subject.other |
Governing differential equations |
en |
dc.subject.other |
Initial-boundary value problems |
en |
dc.subject.other |
Mass models |
en |
dc.subject.other |
Nonlinear initial-boundary value problems |
en |
dc.subject.other |
Nonuniform |
en |
dc.subject.other |
Numerical solution |
en |
dc.subject.other |
Small strains |
en |
dc.subject.other |
Starting vectors |
en |
dc.subject.other |
Time discretization |
en |
dc.subject.other |
Torsional vibration |
en |
dc.subject.other |
Torsional vibration analysis |
en |
dc.subject.other |
Transverse displacements |
en |
dc.subject.other |
Algebra |
en |
dc.subject.other |
Beams and girders |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Control nonlinearities |
en |
dc.subject.other |
Differentiation (calculus) |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Elastic waves |
en |
dc.subject.other |
Equations of motion |
en |
dc.subject.other |
Machine vibrations |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Vibration analysis |
en |
dc.subject.other |
Weaving |
en |
dc.subject.other |
Boundary element method |
en |
dc.title |
Nonlinear nonuniform torsional vibrations of bars by the boundary element method |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jsv.2009.11.035 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jsv.2009.11.035 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of arbitrary doubly symmetric constant cross-section taking into account the effect of geometrical nonlinearity. The bar is subjected to arbitrarily distributed or concentrated conservative dynamic twisting and warping moments along its length, while its edges are supported by the most general torsional boundary conditions. The transverse displacement components are expressed so as to be valid for large twisting rotations (finite displacement-small strain theory), thus the arising governing differential equations and boundary conditions are in general nonlinear. The resulting coupling effect between twisting and axial displacement components is considered and torsional vibration analysis is performed in both the torsional pre- or post-buckled state. A distributed mass model system is employed, taking into account the warping, rotatory and axial inertia, leading to the formulation of a coupled nonlinear initial boundary value problem with respect to the variable along the bar angle of twist and to an ""average"" axial displacement of the cross-section of the bar. The numerical solution of the aforementioned initial boundary value problem is performed using the analog equation method, a BEM based method, leading to a system of nonlinear differential-algebraic equations (DAE), which is solved using an efficient time discretization scheme. Additionally, for the free vibrations case, a nonlinear generalized eigenvalue problem is formulated with respect to the fundamental mode shape at the points of reversal of motion after ignoring the axial inertia to verify the accuracy of the proposed method. The problem is solved using the direct iteration technique (DIT), with a geometrically linear fundamental mode shape as a starting vector. The validity of negligible axial inertia assumption is examined for the problem at hand. © 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Journal of Sound and Vibration |
en |
dc.identifier.doi |
10.1016/j.jsv.2009.11.035 |
en |
dc.identifier.isi |
ISI:000274926800016 |
en |
dc.identifier.volume |
329 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
1853 |
en |
dc.identifier.epage |
1874 |
en |