dc.contributor.author |
Claassen, PAM |
en |
dc.contributor.author |
De Vrije, T |
en |
dc.contributor.author |
Koukios, E |
en |
dc.contributor.author |
Van Niel, E |
en |
dc.contributor.author |
Eroglu, I |
en |
dc.contributor.author |
Modigell, M |
en |
dc.contributor.author |
Friedl, A |
en |
dc.contributor.author |
Wukovits, W |
en |
dc.contributor.author |
Ahrer, W |
en |
dc.date.accessioned |
2014-03-01T01:33:57Z |
|
dc.date.available |
2014-03-01T01:33:57Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0959-6526 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20627 |
|
dc.subject |
Biological hydrogen production |
en |
dc.subject |
Biomass |
en |
dc.subject |
Energy |
en |
dc.subject |
Photofermentation |
en |
dc.subject |
Sustainability |
en |
dc.subject |
Thermophilic fermentation |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.other |
Biological hydrogen production |
en |
dc.subject.other |
Energy |
en |
dc.subject.other |
Photo fermentation |
en |
dc.subject.other |
Sustainability |
en |
dc.subject.other |
Thermophilic fermentation |
en |
dc.subject.other |
Air cleaners |
en |
dc.subject.other |
Biodegradation |
en |
dc.subject.other |
Biomass |
en |
dc.subject.other |
Cost effectiveness |
en |
dc.subject.other |
Crops |
en |
dc.subject.other |
Energy management |
en |
dc.subject.other |
Fermentation |
en |
dc.subject.other |
Gas producers |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Sustainable development |
en |
dc.subject.other |
Hydrogen production |
en |
dc.subject.other |
Photobacteria |
en |
dc.title |
Non-thermal production of pure hydrogen from biomass: HYVOLUTION |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jclepro.2010.05.009 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jclepro.2010.05.009 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The objectives and methodology of the EU-funded research project HYVOLUTION devoted to hydrogen production from biomass are reviewed. The main scientific objective of this project is the development of a novel two-stage bioprocess employing thermophilic and phototrophic bacteria, for the cost-effective production of pure hydrogen from multiple biomass feedstocks in small-scale, cost-effective industries. Results are summarised of the work on pretreatment technologies for optimal biodegradation of energy crops and bio-residues, conditions for maximum efficiency in conversion of fermentable biomass to hydrogen and CO2, concepts of dedicated installations for optimal gas cleaning and gas quality protocols, as well as innovative system integration aimed at minimizing energy demand and maximizing product output. The main technological objective is the construction of prototype modules of the plant which, when assembled, form the basis of a blueprint for the whole chain for converting biomass to pure hydrogen. A brief outline is presented of the progress made towards developing reactors for thermophilic hydrogen production, reactors for photoheterotrophic hydrogen production and equipment for optimal gas cleaning procedures. (C) 2010 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Journal of Cleaner Production |
en |
dc.identifier.doi |
10.1016/j.jclepro.2010.05.009 |
en |
dc.identifier.isi |
ISI:000285234300002 |
en |
dc.identifier.volume |
18 |
en |
dc.identifier.issue |
SUPPL. 1 |
en |
dc.identifier.spage |
S4 |
en |
dc.identifier.epage |
S8 |
en |