dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Santos, SRA |
en |
dc.contributor.author |
Staicu, V |
en |
dc.date.accessioned |
2014-03-01T01:33:57Z |
|
dc.date.available |
2014-03-01T01:33:57Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1230-3429 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20629 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-78751673163&partnerID=40&md5=43a5ff4164ae8b63af7e1bf8d95f6601 |
en |
dc.subject |
(S)+-operator |
en |
dc.subject |
Asymptotic differential operator |
en |
dc.subject |
Degree theory |
en |
dc.subject |
Generalized subdifferential |
en |
dc.subject |
Nonsmooth potential |
en |
dc.subject |
Nonvariational problem |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
P-LAPLACIAN |
en |
dc.subject.other |
MULTIPLICITY |
en |
dc.subject.other |
EXISTENCE |
en |
dc.title |
Nontrival solutions for nonvariational quasilinear neumaan problems |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We consider a nonlinear nonvariational Neumann problem with a nonsmooth potential. Using the spectrum of the assymptotic (as |x| → ∞) differential operator and degree theoretic techniques based on the degree map of certain multivalued perturbations of (S)+-operators, we establish the existence of at least one nontrivial smooth solution. © 2010 Juliusz Schauder Center for Nonlinear Studies. |
en |
heal.publisher |
JULIUSZ SCHAUDER CTR NONLINEAR STUDIES |
en |
heal.journalName |
Topological Methods in Nonlinear Analysis |
en |
dc.identifier.isi |
ISI:000282480800004 |
en |
dc.identifier.volume |
36 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
39 |
en |
dc.identifier.epage |
59 |
en |