HEAL DSpace

Novel energy transfer mechanism in a running quadruped robot with one actuator per leg

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Cherouvim, N en
dc.contributor.author Papadopoulos, E en
dc.date.accessioned 2014-03-01T01:33:57Z
dc.date.available 2014-03-01T01:33:57Z
dc.date.issued 2010 en
dc.identifier.issn 0169-1864 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20630
dc.subject Control en
dc.subject Energy transfer en
dc.subject Legged en
dc.subject Running en
dc.subject.classification Robotics en
dc.subject.other Complete control en
dc.subject.other Control energy en
dc.subject.other Controller tuning en
dc.subject.other Energy loss en
dc.subject.other Forward speed en
dc.subject.other Ground friction en
dc.subject.other Mechanism design en
dc.subject.other Novel methods en
dc.subject.other Physical parameters en
dc.subject.other Pitch control en
dc.subject.other Power autonomy en
dc.subject.other Quadruped Robots en
dc.subject.other Real-world en
dc.subject.other Running robots en
dc.subject.other Three-dimensional model en
dc.subject.other Unactuated degrees en
dc.subject.other Actuators en
dc.subject.other Algorithms en
dc.subject.other Controllers en
dc.subject.other Electron energy loss spectroscopy en
dc.subject.other Energy dissipation en
dc.subject.other Robots en
dc.subject.other Three dimensional en
dc.subject.other Machine design en
dc.title Novel energy transfer mechanism in a running quadruped robot with one actuator per leg en
heal.type journalArticle en
heal.identifier.primary 10.1163/016918610X496937 en
heal.identifier.secondary http://dx.doi.org/10.1163/016918610X496937 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract In this work we develop a novel method, or mechanism, of energy transfer in a quadruped running robot. The robot possesses only one actuator per leg, for lower weight and greater power autonomy. The developed mechanism ensures correct dispersion of energy to the actuated and the unactuated degrees of freedom of the robot for stable running. In the mechanism design, we address the added problem of running on inclined ground. In conjunction with a pitch control method, the energy transfer mechanism forms a complete control algorithm. Due to the novel dynamics-based design of the mechanism, it allows the arbitrary setting of the motion forward speed and apex height. Further, it may be applied for different robot physical parameters and ground inclines, without extensive controller tuning. This has not been previously possible using only one actuator per leg. Simulations of a detailed three-dimensional model of the robot demonstrate the mechanism on two different robots. The simulations take into account many real-world characteristics, including realistic leg models, energy loss due to feet collisions, foot-ground friction and energy losses in the joints. Results demonstrate that inclines of up to 20 degrees are properly negotiated. (C) Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2010 en
heal.publisher VSP BV en
heal.journalName Advanced Robotics en
dc.identifier.doi 10.1163/016918610X496937 en
dc.identifier.isi ISI:000278016700002 en
dc.identifier.volume 24 en
dc.identifier.issue 7 en
dc.identifier.spage 963 en
dc.identifier.epage 978 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής