dc.contributor.author |
Yang, B |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.date.accessioned |
2014-03-01T01:34:00Z |
|
dc.date.available |
2014-03-01T01:34:00Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1735-8787 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20637 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-77956196828&partnerID=40&md5=da5b6ef9c4fc86964f0aa2a249f45caa |
en |
dc.relation.uri |
http://www.emis.de/journals/BJMA/tex_v4_n2_a8.pdf |
en |
dc.subject |
Hilbert-type integral inequality |
en |
dc.subject |
Homogenous kernel |
en |
dc.subject |
Operator |
en |
dc.subject.other |
SELF-ADJOINT OPERATOR |
en |
dc.subject.other |
NORM |
en |
dc.title |
On a hilbert-type integral inequality in the subinterval and its operator expression |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this paper, by using the methods of real analysis and functional analysis, a Hilbert-type integral inequality in the subinterval (a, infinity) (a > 0) with the homogeneous kernel of -lambda-degree and a best constant factor and its operator expression are given. As applications, a few improved results, the equivalent forms and some new inequalities with the particular kernels are obtained. |
en |
heal.publisher |
BANACH MATHEMATICAL RESEARCH GROUP |
en |
heal.journalName |
Banach Journal of Mathematical Analysis |
en |
dc.identifier.isi |
ISI:000277058000008 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
100 |
en |
dc.identifier.epage |
110 |
en |