dc.contributor.author |
Papathanasiou, N |
en |
dc.contributor.author |
Psarrakos, P |
en |
dc.date.accessioned |
2014-03-01T01:34:00Z |
|
dc.date.available |
2014-03-01T01:34:00Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0096-3003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20640 |
|
dc.subject |
Condition number |
en |
dc.subject |
Eigenvalue |
en |
dc.subject |
Matrix polynomial |
en |
dc.subject |
Perturbation |
en |
dc.subject |
Pseudospectrum |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Condition numbers |
en |
dc.subject.other |
Eigen-value |
en |
dc.subject.other |
Eigenvalue problem |
en |
dc.subject.other |
Eigenvalues |
en |
dc.subject.other |
Eigenvectors |
en |
dc.subject.other |
Euclidean norm |
en |
dc.subject.other |
Ill-conditioned |
en |
dc.subject.other |
Matrix perturbation theory |
en |
dc.subject.other |
Matrix polynomials |
en |
dc.subject.other |
Perturbation bounds |
en |
dc.subject.other |
Polynomial eigenvalue problems |
en |
dc.subject.other |
Pseudospectral |
en |
dc.subject.other |
Pseudospectrum |
en |
dc.subject.other |
Upper Bound |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Number theory |
en |
dc.subject.other |
Perturbation techniques |
en |
dc.subject.other |
Polynomials |
en |
dc.subject.other |
Switching systems |
en |
dc.subject.other |
Matrix algebra |
en |
dc.title |
On condition numbers of polynomial eigenvalue problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.amc.2010.02.011 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.amc.2010.02.011 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this paper, we investigate condition numbers of eigenvalue problems of matrix polynomials with nonsingular leading coefficients, generalizing classical results of matrix perturbation theory. We provide a relation between the condition numbers of eigenvalues and the pseudospectral growth rate. We obtain that if a simple eigenvalue of a matrix polynomial is ill-conditioned in some respects, then it is close to be multiple, and we construct an upper bound for this distance (measured in the euclidean norm). We also derive a new expression for the condition number of a simple eigenvalue, which does not involve eigenvectors. Moreover, an Elsner-like perturbation bound for matrix polynomials is presented. (C) 2010 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Applied Mathematics and Computation |
en |
dc.identifier.doi |
10.1016/j.amc.2010.02.011 |
en |
dc.identifier.isi |
ISI:000276105200017 |
en |
dc.identifier.volume |
216 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
1194 |
en |
dc.identifier.epage |
1205 |
en |