HEAL DSpace

On the advantages of the non-concave penalized likelihood model selection method with minimum prediction errors in large-scale medical studies

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karagrigoriou, A en
dc.contributor.author Koukouvinos, C en
dc.contributor.author Mylona, K en
dc.date.accessioned 2014-03-01T01:34:01Z
dc.date.available 2014-03-01T01:34:01Z
dc.date.issued 2010 en
dc.identifier.issn 0266-4763 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20644
dc.subject Deviance en
dc.subject Generalized linear model en
dc.subject Highdimensional data set en
dc.subject Model selection en
dc.subject Non-concave penalized likelihood en
dc.subject Trauma en
dc.subject.classification Statistics & Probability en
dc.subject.other ASYMPTOTICALLY EFFICIENT SELECTION en
dc.subject.other VARIABLE SELECTION en
dc.subject.other CROSS-VALIDATION en
dc.subject.other REGRESSION en
dc.subject.other ORDER en
dc.subject.other LASSO en
dc.title On the advantages of the non-concave penalized likelihood model selection method with minimum prediction errors in large-scale medical studies en
heal.type journalArticle en
heal.identifier.primary 10.1080/02664760802638116 en
heal.identifier.secondary http://dx.doi.org/10.1080/02664760802638116 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract Variable and model selection problems are fundamental to high-dimensional statistical modeling in diverse fields of sciences. Especially in health studies, many potential factors are usually introduced to determine an outcome variable. This paper deals with the problem of high-dimensional statistical modeling through the analysis of the trauma annual data in Greece for 2005. The data set is divided into the experiment and control sets and consists of 6334 observations and 112 factors that include demographic, transport and intrahospital data used to detect possible risk factors of death. In our study, different model selection techniques are applied to the experiment set and the notion of deviance is used on the control set to assess the fit of the overall selected model. The statistical methods employed in this work were the nonconcave penalized likelihood methods, smoothly clipped absolute deviation, least absolute shrinkage and selection operator, and Hard, the generalized linear logistic regression, and the best subset variable selection. The way of identifying the significant variables in large medical data sets along with the performance and the pros and cons of the various statistical techniques used are discussed. The performed analysis reveals the distinct advantages of the non-concave penalized likelihood methods over the traditional model selection techniques. © 2010 Taylor & Francis. en
heal.publisher ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD en
heal.journalName Journal of Applied Statistics en
dc.identifier.doi 10.1080/02664760802638116 en
dc.identifier.isi ISI:000272848000002 en
dc.identifier.volume 37 en
dc.identifier.issue 1 en
dc.identifier.spage 13 en
dc.identifier.epage 24 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής