dc.contributor.author |
Kyritsi, ST |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:34:01Z |
|
dc.date.available |
2014-03-01T01:34:01Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0017-0895 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20652 |
|
dc.subject |
Eigenvalues |
en |
dc.subject |
Multiplicity of Solutions |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
P-LAPLACIAN |
en |
dc.subject.other |
NONTRIVIAL SOLUTIONS |
en |
dc.subject.other |
EQUATIONS |
en |
dc.subject.other |
FUNCTIONALS |
en |
dc.subject.other |
EXISTENCE |
en |
dc.title |
On the multiplicity of solutions for non-linear periodic problems with the non-linearity crossing several eigenvalues |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1017/S0017089509990346 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1017/S0017089509990346 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this paper we consider a non-linear periodic problem driven by the scalar p-Laplacian and with a non-smooth potential. We assume that the multi-valued right-hand-side non-linearity exhibits an asymmetric behaviour at ±∞ and crosses a finite number of eigenvalues as we move from -∞ to +∞. Using a variational approach based on the non-smooth critical-point theory, we show that the problem has at least two non-trivial solutions, one of which has constant sign. For the semi-linear (p = 2), smooth problem, using Morse theory, we show that the problem has at least three non-trivial solutions, again one with constant sign. © Glasgow Mathematical Journal Trust 2009. |
en |
heal.publisher |
CAMBRIDGE UNIV PRESS |
en |
heal.journalName |
Glasgow Mathematical Journal |
en |
dc.identifier.doi |
10.1017/S0017089509990346 |
en |
dc.identifier.isi |
ISI:000277348200006 |
en |
dc.identifier.volume |
52 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
271 |
en |
dc.identifier.epage |
302 |
en |