dc.contributor.author |
Papakanellos, PJ |
en |
dc.contributor.author |
Fikioris, G |
en |
dc.contributor.author |
Michalopoulou, A |
en |
dc.date.accessioned |
2014-03-01T01:34:02Z |
|
dc.date.available |
2014-03-01T01:34:02Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0018-926X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20653 |
|
dc.subject |
Antenna feeds |
en |
dc.subject |
Antenna theory |
en |
dc.subject |
Galerkin method |
en |
dc.subject |
Integral equations |
en |
dc.subject |
Wire antennas |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Telecommunications |
en |
dc.subject.other |
Antenna feeds |
en |
dc.subject.other |
Antenna theory |
en |
dc.subject.other |
Basis functions |
en |
dc.subject.other |
Exact solution |
en |
dc.subject.other |
Ill posed |
en |
dc.subject.other |
Method of auxiliary sources |
en |
dc.subject.other |
Numerical solution |
en |
dc.subject.other |
Sinusoidal currents |
en |
dc.subject.other |
Thin-wire antennas |
en |
dc.subject.other |
Two equation |
en |
dc.subject.other |
Wire antennas |
en |
dc.subject.other |
Antenna feeders |
en |
dc.subject.other |
Galerkin methods |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Wire |
en |
dc.subject.other |
Antennas |
en |
dc.title |
On the oscillations appearing in numerical solutions of solvable and nonsolvable integral equations for thin-wire antennas |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TAP.2010.2044319 |
en |
heal.identifier.secondary |
5422615 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TAP.2010.2044319 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Differences between certain solvable and nonsolvable ill-posed integral equations, with the same nonsingular kernel, are discussed. The main results come from constructing a solvable equation in the context of straight thin-wire antennas. The kernel of this equation is the usual approximate (also called reduced) kernel, while its exact solution is the familiar sinusoidal current. Numerical solutions to this solvable equation are compared to corresponding numerical solutions of the usualHalln and Pocklingtonequations with the approximate kernel; it is known from previous publications that these last two equations are nonsolvable and that their numerical solutions present severe oscillations when the number of basis functions is sufficiently large. It is found that the difficulties encountered in the former (solvable) equation are much less important compared to those of the nonsolvable ones. The same conclusion is brought out from other integral equations, arising in different contexts (thin-wire circular-loop antenna, Method of Auxiliary Sources, and straight wire antenna of infinite length). We discuss the consistency of our results with Picard's theorem. The results in this paper supplement previous publications regarding the difficulties of numerically solving thin-wire integral equations with the approximate kernel. © 2006 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Antennas and Propagation |
en |
dc.identifier.doi |
10.1109/TAP.2010.2044319 |
en |
dc.identifier.isi |
ISI:000277339900022 |
en |
dc.identifier.volume |
58 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
1635 |
en |
dc.identifier.epage |
1644 |
en |