dc.contributor.author |
Pirentis, AP |
en |
dc.contributor.author |
Lazopoulos, KA |
en |
dc.date.accessioned |
2014-03-01T01:34:02Z |
|
dc.date.available |
2014-03-01T01:34:02Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0020-7683 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20654 |
|
dc.subject |
Bifurcation |
en |
dc.subject |
Constraints |
en |
dc.subject |
Cytoskeleton |
en |
dc.subject |
Singularity theory |
en |
dc.subject |
Stability |
en |
dc.subject |
Tensegrity |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Characteristic three |
en |
dc.subject.other |
Constraints |
en |
dc.subject.other |
Critical behaviour |
en |
dc.subject.other |
Critical condition |
en |
dc.subject.other |
Cusp catastrophe |
en |
dc.subject.other |
Cytoskeletons |
en |
dc.subject.other |
Elastic bar |
en |
dc.subject.other |
Elastic strings |
en |
dc.subject.other |
Mathematical approach |
en |
dc.subject.other |
Non-constrained |
en |
dc.subject.other |
Singularity theory |
en |
dc.subject.other |
Symmetric equilibrium |
en |
dc.subject.other |
Tensegrities |
en |
dc.subject.other |
Total potential energy |
en |
dc.subject.other |
Bars (metal) |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Constraint theory |
en |
dc.subject.other |
Pressure effects |
en |
dc.subject.other |
System stability |
en |
dc.subject.other |
Three dimensional |
en |
dc.title |
On the singularities of a constrained (incompressible-like) tensegrity-cytoskeleton model under equitriaxial loading |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ijsolstr.2009.11.010 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ijsolstr.2009.11.010 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Singularity theory is applied for the study of the characteristic three-dimensional tensegrity-cytoskeleton model after adopting an incompressibility constraint. The model comprises six elastic bars interconnected with 24 elastic string members. Previous studies have already been performed on non-constrained systems; however, the present one allows for general non-symmetric equilibrium configurations. Critical conditions for branching of the equilibrium are derived and post-critical behaviour is discussed. Classification of the simple and compound singularities of the total potential energy function is effected. The theory is implemented into the cusp catastrophe for the case of one-dimensional branching of the buckling-allowed tensegrity model, and an elliptic umbilic singularity for compound branching of a rigid-bar model. It is pointed out that singularity studies with constraints demand a quite different mathematical approach than those without constraints. (C) 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Solids and Structures |
en |
dc.identifier.doi |
10.1016/j.ijsolstr.2009.11.010 |
en |
dc.identifier.isi |
ISI:000274842500003 |
en |
dc.identifier.volume |
47 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
759 |
en |
dc.identifier.epage |
767 |
en |