dc.contributor.author |
Giannoukos, I |
en |
dc.contributor.author |
Anagnostopoulos, C-N |
en |
dc.contributor.author |
Loumos, V |
en |
dc.contributor.author |
Kayafas, E |
en |
dc.date.accessioned |
2014-03-01T01:34:02Z |
|
dc.date.available |
2014-03-01T01:34:02Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0031-3203 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20656 |
|
dc.subject |
High resolution image processing |
en |
dc.subject |
License Plate Recognition |
en |
dc.subject |
Operator Context Scanning algorithm |
en |
dc.subject |
Sliding windows analysis |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Amount of information |
en |
dc.subject.other |
Computational costs |
en |
dc.subject.other |
Data sets |
en |
dc.subject.other |
Environmental conditions |
en |
dc.subject.other |
High definition video |
en |
dc.subject.other |
High-resolution image processing |
en |
dc.subject.other |
Image-based |
en |
dc.subject.other |
Input image |
en |
dc.subject.other |
Intelligent image processing |
en |
dc.subject.other |
License plate detection |
en |
dc.subject.other |
License plate recognition |
en |
dc.subject.other |
License plate recognition systems |
en |
dc.subject.other |
Novel algorithm |
en |
dc.subject.other |
Operator Context Scanning algorithm |
en |
dc.subject.other |
Real-time license plate recognition |
en |
dc.subject.other |
Regions of interest |
en |
dc.subject.other |
Scanning input |
en |
dc.subject.other |
Sliding Window |
en |
dc.subject.other |
Sliding-window analysis |
en |
dc.subject.other |
System effectiveness |
en |
dc.subject.other |
System's performance |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Decoding |
en |
dc.subject.other |
Imaging systems |
en |
dc.subject.other |
License plates (automobile) |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Object recognition |
en |
dc.subject.other |
Scanning |
en |
dc.subject.other |
Optical character recognition |
en |
dc.title |
Operator context scanning to support high segmentation rates for real time license plate recognition |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.patcog.2010.06.008 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.patcog.2010.06.008 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Introducing high definition videos and images in object recognition has provided new possibilities in the field of intelligent image processing and pattern recognition. However, due to the large amount of information that needs to be processed, the computational costs are high, making the HD systems slow. To this end, a novel algorithm applied to sliding window analysis, namely Operator Context Scanning (OCS), is proposed and tested on the license plate detection module of a License Plate Recognition (LPR) system. In the LPR system, the OCS algorithm is applied on the Sliding Concentric Windows pixel operator and has been found to improve the LPR system's performance in terms of speed by rapidly scanning input images focusing only on regions of interest, while at the same time it does not reduce the system effectiveness. Additionally, a novel characteristic is presented, namely, the context of the image based on a sliding windows operator. This characteristic helps to quickly categorize the environmental conditions upon which the input image was taken. The algorithm is tested on a data set that includes images of various resolutions, acquired under a variety of environmental conditions. (C) 2010 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Pattern Recognition |
en |
dc.identifier.doi |
10.1016/j.patcog.2010.06.008 |
en |
dc.identifier.isi |
ISI:000280983100015 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
3866 |
en |
dc.identifier.epage |
3878 |
en |