HEAL DSpace

Physical understanding of complex multiscale biochemical models via algorithmic simplification: Glycolysis in Saccharomyces cerevisiae

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kourdis, PD en
dc.contributor.author Steuer, R en
dc.contributor.author Goussis, DA en
dc.date.accessioned 2014-03-01T01:34:18Z
dc.date.available 2014-03-01T01:34:18Z
dc.date.issued 2010 en
dc.identifier.issn 0167-2789 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20683
dc.subject Computational singular perturbations en
dc.subject Dynamical systems en
dc.subject Glycolytic oscillations en
dc.subject Model reduction en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Physics, Multidisciplinary en
dc.subject.classification Physics, Mathematical en
dc.subject.other Biochemical functions en
dc.subject.other Biochemical model en
dc.subject.other Cellular reactions en
dc.subject.other Computational singular perturbation en
dc.subject.other Computational singular perturbations en
dc.subject.other Coupled reaction en
dc.subject.other Full-scale models en
dc.subject.other Glycolytic oscillations en
dc.subject.other Large-scale models en
dc.subject.other Linear chain en
dc.subject.other Low-dimensional manifolds en
dc.subject.other Model reduction en
dc.subject.other Model reduction techniques en
dc.subject.other Multiscales en
dc.subject.other Oscillatory regimes en
dc.subject.other Redox status en
dc.subject.other Saccharomyces cerevisiae en
dc.subject.other Time-scales en
dc.subject.other Wide spectrum en
dc.subject.other Yeast cell en
dc.subject.other Dynamical systems en
dc.subject.other Models en
dc.subject.other Perturbation techniques en
dc.subject.other Redox reactions en
dc.subject.other Yeast en
dc.subject.other Pathology en
dc.title Physical understanding of complex multiscale biochemical models via algorithmic simplification: Glycolysis in Saccharomyces cerevisiae en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.physd.2010.06.004 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.physd.2010.06.004 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract Large-scale models of cellular reaction networks are usually highly complex and characterized by a wide spectrum of time scales, making a direct interpretation and understanding of the relevant mechanisms almost impossible. We address this issue by demonstrating the benefits provided by model reduction techniques. We employ the Computational Singular Perturbation (CSP) algorithm to analyze the glycolytic pathway of intact yeast cells in the oscillatory regime. As a primary object of research for many decades, glycolytic oscillations represent a paradigmatic candidate for studying biochemical function and mechanisms. Using a previously published full-scale model of glycolysis, we show that, due to fast dissipative time scales, the solution is asymptotically attracted on a low dimensional manifold. Without any further input from the investigator, CSP clarifies several long-standing questions in the analysis of glycolytic oscillations, such as the origin of the oscillations in the upper part of glycolysis, the importance of energy and redox status, as well as the fact that neither the oscillations nor cell-cell synchronization can be understood in terms of glycolysis as a simple linear chain of sequentially coupled reactions. (C) 2010 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Physica D: Nonlinear Phenomena en
dc.identifier.doi 10.1016/j.physd.2010.06.004 en
dc.identifier.isi ISI:000281367300005 en
dc.identifier.volume 239 en
dc.identifier.issue 18 en
dc.identifier.spage 1798 en
dc.identifier.epage 1817 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής