dc.contributor.author |
Athanasiadis, CE |
en |
dc.contributor.author |
Stratis, IG |
en |
dc.contributor.author |
Sevroglou, V |
en |
dc.contributor.author |
Tsitsas, NL |
en |
dc.date.accessioned |
2014-03-01T01:34:18Z |
|
dc.date.available |
2014-03-01T01:34:18Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1081-2865 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20685 |
|
dc.subject |
General scattering theorem |
en |
dc.subject |
Linear elasticity |
en |
dc.subject |
Mixed scattering relations |
en |
dc.subject |
Nested piecewise homogenous obstacle |
en |
dc.subject |
Optical theorem |
en |
dc.subject |
Point source fields |
en |
dc.subject |
Reciprocity principle |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
General scattering theorem |
en |
dc.subject.other |
Linear elasticity |
en |
dc.subject.other |
Optical theorem |
en |
dc.subject.other |
Piece-wise |
en |
dc.subject.other |
Point sources |
en |
dc.subject.other |
Reciprocity principle |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Scattering |
en |
dc.title |
Point-source elastic scattering by a nested piecewise homogeneous obstacle in an elastic environment |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1177/1081286508102048 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1177/1081286508102048 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
A nested piecewise homogeneous elastic scatterer is embedded in a homogeneous elastic environment. The scattererg's core may be rigid, cavity, Robin, or lossy penetrable. A 2D or 3D incident elastic field, generated by a point-source located in the homogeneous environment, impinges on the scatterer. The scattering problem is formulated in a dyadic form. The main purpose of this paper is to establish scattering relations for the elastic point-source excitation of a nested piecewise homogeneous scatterer. To this direction, we establish reciprocity principles and general scattering theorems relating the scattered fields with the corresponding far-field patterns. Furthermore, for a scatterer excited by a point-source and a plane wave, mixed scattering relations are derived. The optical theorem, relating the scattering cross-section with the field at the point-sourceg's location a is recovered as a corollary of the general scattering theorem. We present a detailed investigation for the 2D case and summarize the results for the 3D case, pointing out the main differences in the analysis. © 2010 Author(s). |
en |
heal.publisher |
SAGE PUBLICATIONS LTD |
en |
heal.journalName |
Mathematics and Mechanics of Solids |
en |
dc.identifier.doi |
10.1177/1081286508102048 |
en |
dc.identifier.isi |
ISI:000278872400001 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
419 |
en |
dc.identifier.epage |
438 |
en |