dc.contributor.author |
Anastassiou, G |
en |
dc.contributor.author |
Vomvoridis, JL |
en |
dc.date.accessioned |
2014-03-01T01:34:19Z |
|
dc.date.available |
2014-03-01T01:34:19Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0093-3813 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20693 |
|
dc.subject |
Cyclotron radiation |
en |
dc.subject |
Electron beams (e-beams) |
en |
dc.subject |
Gyrotrons |
en |
dc.subject |
Microwave devices |
en |
dc.subject |
Microwave power amplifiers |
en |
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.other |
E-beams |
en |
dc.subject.other |
Electron motion |
en |
dc.subject.other |
External magnetic field |
en |
dc.subject.other |
Field amplitudes |
en |
dc.subject.other |
Free space |
en |
dc.subject.other |
Gaussian output |
en |
dc.subject.other |
Gaussian profiles |
en |
dc.subject.other |
High efficiency |
en |
dc.subject.other |
High-current |
en |
dc.subject.other |
High-power microwave source |
en |
dc.subject.other |
Iterative schemes |
en |
dc.subject.other |
Microwave power amplifier |
en |
dc.subject.other |
Power levels |
en |
dc.subject.other |
Radiation field |
en |
dc.subject.other |
Rf-power |
en |
dc.subject.other |
Sheet electron beams |
en |
dc.subject.other |
Amplification |
en |
dc.subject.other |
Cyclotron radiation |
en |
dc.subject.other |
Cyclotrons |
en |
dc.subject.other |
Electron beams |
en |
dc.subject.other |
Electron optics |
en |
dc.subject.other |
Electrons |
en |
dc.subject.other |
Fusion reactors |
en |
dc.subject.other |
Gyrotrons |
en |
dc.subject.other |
Magnetic fields |
en |
dc.subject.other |
Microwave amplifiers |
en |
dc.subject.other |
Microwave generation |
en |
dc.subject.other |
Microwave power transmission |
en |
dc.subject.other |
Microwave tubes |
en |
dc.subject.other |
Nonlinear feedback |
en |
dc.subject.other |
Power amplifiers |
en |
dc.subject.other |
Gaussian beams |
en |
dc.title |
Post-amplification of a gyrotron RF beam by a sheet electron beam |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TPS.2010.2043689 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TPS.2010.2043689 |
en |
heal.identifier.secondary |
5443537 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The availability of high-power microwave sources like gyrotrons makes it now possible to use the Gaussian output RF beam of a conventional gyrotron propagating in free space as an input for the interaction with a sheet electron beam (e-beam) drifting along an external magnetic field, with the aim of generating even higher RF power. Since this interaction is from the beginning in the nonlinear high-efficiency regime, the corresponding field amplitude is adequate to extract a significant amount of power from the high-current e-beam with no need for feedback from the walls of any cavity or resonator. The radiation field excited by the nonlinear perturbed electron motion has been calculated using a self-consistent iterative scheme and is seen to maintain the basic features of the initial RF beam (such as the Gaussian profile), but at a much higher power level as is desired for a fusion reactor. © 2010 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Plasma Science |
en |
dc.identifier.doi |
10.1109/TPS.2010.2043689 |
en |
dc.identifier.isi |
ISI:000281764600010 |
en |
dc.identifier.volume |
38 |
en |
dc.identifier.issue |
6 PART 1 |
en |
dc.identifier.spage |
1208 |
en |
dc.identifier.epage |
1218 |
en |