dc.contributor.author |
Katsikadelis, JT |
en |
dc.contributor.author |
Babouskos, NG |
en |
dc.date.accessioned |
2014-03-01T01:34:19Z |
|
dc.date.available |
2014-03-01T01:34:19Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0955-7997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20695 |
|
dc.subject |
Analog equation method |
en |
dc.subject |
Boundary element method |
en |
dc.subject |
Buckling |
en |
dc.subject |
Fractional derivatives |
en |
dc.subject |
Large deflections |
en |
dc.subject |
Plates |
en |
dc.subject |
Viscoelasticity |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Analog equation methods |
en |
dc.subject.other |
Boundary elements |
en |
dc.subject.other |
Fractional derivatives |
en |
dc.subject.other |
Large deflection |
en |
dc.subject.other |
Plates |
en |
dc.subject.other |
Beams and girders |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Buckling |
en |
dc.subject.other |
Control nonlinearities |
en |
dc.subject.other |
Differentiation (calculus) |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Initial value problems |
en |
dc.subject.other |
Ordinary differential equations |
en |
dc.subject.other |
Plates (structural components) |
en |
dc.subject.other |
Poisson equation |
en |
dc.subject.other |
Viscoelasticity |
en |
dc.subject.other |
Viscosity |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.title |
Post-buckling analysis of viscoelastic plates with fractional derivative models |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.enganabound.2010.07.003 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.enganabound.2010.07.003 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The post-buckling response of thin plates made of linear viscoelastic materials is investigated. The employed viscoelastic material is described with fractional order time derivatives. The governing equations, which are derived by considering the equilibrium of the plate element, are three coupled nonlinear fractional partial evolution type differential equations in terms of three displacements. The nonlinearity is due to nonlinear kinematic relations based on the von Karman assumption. The solution is achieved using the analog equation method (AEM), which transforms the original equations into three uncoupled linear equations, namely a linear plate (biharmonic) equation for the transverse deflection and two linear membrane (Poisson's) equations for the inplane deformation under fictitious loads. The resulting initial value problem for the fictitious sources is a system of nonlinear fractional ordinary differential equations, which is solved using the numerical method developed recently by Katsikadelis for multi-term nonlinear fractional differential equations. The numerical examples not only demonstrate the efficiency and validate the accuracy of the solution procedure, but also give a better insight into this complicated but very interesting engineering plate problem (C) 2010 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Engineering Analysis with Boundary Elements |
en |
dc.identifier.doi |
10.1016/j.enganabound.2010.07.003 |
en |
dc.identifier.isi |
ISI:000282112900005 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
1038 |
en |
dc.identifier.epage |
1048 |
en |