dc.contributor.author |
Barthelmie, RJ |
en |
dc.contributor.author |
Pryor, SC |
en |
dc.contributor.author |
Frandsen, ST |
en |
dc.contributor.author |
Hansen, KS |
en |
dc.contributor.author |
Schepers, JG |
en |
dc.contributor.author |
Rados, K |
en |
dc.contributor.author |
Schlez, W |
en |
dc.contributor.author |
Neubert, A |
en |
dc.contributor.author |
Jensen, LE |
en |
dc.contributor.author |
Neckelmann, S |
en |
dc.date.accessioned |
2014-03-01T01:34:23Z |
|
dc.date.available |
2014-03-01T01:34:23Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0739-0572 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20718 |
|
dc.subject.classification |
Engineering, Ocean |
en |
dc.subject.classification |
Meteorology & Atmospheric Sciences |
en |
dc.subject.other |
Computational fluid dynamics models |
en |
dc.subject.other |
Data ensemble |
en |
dc.subject.other |
Data screening |
en |
dc.subject.other |
Degree of uncertainty |
en |
dc.subject.other |
Ensemble averages |
en |
dc.subject.other |
High variability |
en |
dc.subject.other |
Model performance |
en |
dc.subject.other |
Oblique angles |
en |
dc.subject.other |
Offshore wind farms |
en |
dc.subject.other |
Power out put |
en |
dc.subject.other |
Power-losses |
en |
dc.subject.other |
Root-mean square errors |
en |
dc.subject.other |
Rotor diameter |
en |
dc.subject.other |
Wind farm |
en |
dc.subject.other |
Wind speed |
en |
dc.subject.other |
Wind turbine wakes |
en |
dc.subject.other |
Computational fluid dynamics |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Electric utilities |
en |
dc.subject.other |
Farms |
en |
dc.subject.other |
Offshore power plants |
en |
dc.subject.other |
Thermoelectric power |
en |
dc.subject.other |
Wakes |
en |
dc.subject.other |
Wind turbines |
en |
dc.subject.other |
Wind power |
en |
dc.subject.other |
computational fluid dynamics |
en |
dc.subject.other |
computer simulation |
en |
dc.subject.other |
design |
en |
dc.subject.other |
model test |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
offshore structure |
en |
dc.subject.other |
optimization |
en |
dc.subject.other |
performance assessment |
en |
dc.subject.other |
power generation |
en |
dc.subject.other |
quantitative analysis |
en |
dc.subject.other |
uncertainty analysis |
en |
dc.subject.other |
wake |
en |
dc.subject.other |
wind farm |
en |
dc.subject.other |
wind turbine |
en |
dc.subject.other |
wind velocity |
en |
dc.subject.other |
Atlantic Ocean |
en |
dc.subject.other |
Denmark |
en |
dc.subject.other |
Horns Rev |
en |
dc.subject.other |
Lolland |
en |
dc.subject.other |
North Sea |
en |
dc.subject.other |
Nysted |
en |
dc.subject.other |
Sjaelland |
en |
dc.title |
Quantifying the impact of wind turbine wakes on power output at offshore wind farms |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1175/2010JTECHA1398.1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1175/2010JTECHA1398.1 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
There is an urgent need to develop and optimize tools for designing large wind farm arrays for deployment offshore. This research is focused on improving the understanding of, and modeling of, wind turbine wakes in order to make more accurate power output predictions for large offshore wind farms. Detailed data ensembles of power losses due to wakes at the large wind farms at Nysted and Horns Rev are presented and analyzed. Differences in turbine spacing (10.5 versus 7 rotor diameters) are not differentiable in wake-related power losses from the two wind farms. This is partly due to the high variability in the data despite careful data screening. A number of ensemble averages are simulated with a range of wind farm and computational fluid dynamics models and compared to observed wake losses. All models were able to capture wake width to some degree, and some models also captured the decrease of power output moving through the wind farm. Rootmean-square errors indicate a generally better model performance for higher wind speeds (10 rather than 6 m s-1) and for direct down the row flow than for oblique angles. Despite this progress, wake modeling of large wind farms is still subject to an unacceptably high degree of uncertainty. © 2010 American Meteorological Society. |
en |
heal.publisher |
AMER METEOROLOGICAL SOC |
en |
heal.journalName |
Journal of Atmospheric and Oceanic Technology |
en |
dc.identifier.doi |
10.1175/2010JTECHA1398.1 |
en |
dc.identifier.isi |
ISI:000281160600003 |
en |
dc.identifier.volume |
27 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
1302 |
en |
dc.identifier.epage |
1317 |
en |