HEAL DSpace

Quasilinear theory revisited: General kinetic formulation of wave-particle interactions in plasmas

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Hizanidis, K en
dc.contributor.author Kominis, Y en
dc.contributor.author Ram, AK en
dc.date.accessioned 2014-03-01T01:34:23Z
dc.date.available 2014-03-01T01:34:23Z
dc.date.issued 2010 en
dc.identifier.issn 0741-3335 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20720
dc.subject.classification Physics, Fluids & Plasmas en
dc.subject.classification Physics, Nuclear en
dc.subject.other Action-angle variables en
dc.subject.other Collisional relaxation en
dc.subject.other Controlling current en
dc.subject.other Current drives en
dc.subject.other Diffusion equations en
dc.subject.other Diffusion operators en
dc.subject.other Electrostatic waves en
dc.subject.other Fundamental equations en
dc.subject.other Fusion devices en
dc.subject.other Fusion plasmas en
dc.subject.other Heating plasmas en
dc.subject.other Master equations en
dc.subject.other Particle distribution functions en
dc.subject.other Particle dynamics en
dc.subject.other Particle motions en
dc.subject.other Quasi-linear en
dc.subject.other Quasilinear theory en
dc.subject.other Radio frequencies en
dc.subject.other Time dependent en
dc.subject.other Time reversal en
dc.subject.other Time-dependent diffusion en
dc.subject.other Transport process en
dc.subject.other Wave-particle interactions en
dc.subject.other Collisional plasmas en
dc.subject.other Diffusion en
dc.subject.other Distribution functions en
dc.subject.other Electromagnetic waves en
dc.subject.other Electromagnetism en
dc.subject.other Exchange interactions en
dc.subject.other Fusion reactors en
dc.subject.other Hamiltonians en
dc.subject.other Particle interactions en
dc.subject.other Wave plasma interactions en
dc.subject.other Mathematical operators en
dc.title Quasilinear theory revisited: General kinetic formulation of wave-particle interactions in plasmas en
heal.type journalArticle en
heal.identifier.primary 10.1088/0741-3335/52/12/124022 en
heal.identifier.secondary http://dx.doi.org/10.1088/0741-3335/52/12/124022 en
heal.identifier.secondary 124022 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract In laboratory fusion devices radio frequency electromagnetic waves are routinely used for heating plasmas and for controlling current profiles. The evolution of particle distribution function in the presence of electromagnetic waves is derived from fundamental equations using the action-angle variables of the dynamical Hamiltonian. Unlike conventional quasilinear theories (QLTs), the distribution function is evolved concurrently with the particle motion. Since the particle dynamics is time reversal invariant, the master equation for the evolution of the distribution function is also time reversal invariant. A sequential averaging of the master equation over the angles leads to a hierarchy of diffusion equations. The diffusion operator in the equation obtained after averaging over all angles is time dependent, in direct contrast to time independent diffusion operator in QLTs. The evolution of the distribution function with time-dependent diffusion operator is markedly different from quasilinear evolution and is illustrated for current drive by a spectrum of coherent electrostatic waves. A proper description of wave-particle interactions is important for fusion plasmas since the velocity space gradients of the distribution function decisively affect collisional relaxation and the associated transport processes. © 2010 IOP Publishing Ltd. en
heal.publisher IOP PUBLISHING LTD en
heal.journalName Plasma Physics and Controlled Fusion en
dc.identifier.doi 10.1088/0741-3335/52/12/124022 en
dc.identifier.isi ISI:000286181100023 en
dc.identifier.volume 52 en
dc.identifier.issue 12 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής