HEAL DSpace

Robust visual behavior recognition

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kosmopoulos, D en
dc.contributor.author Chatzis, SP en
dc.date.accessioned 2014-03-01T01:34:27Z
dc.date.available 2014-03-01T01:34:27Z
dc.date.issued 2010 en
dc.identifier.issn 1053-5888 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20740
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Activity recognition en
dc.subject.other Model training en
dc.subject.other Multiple cameras en
dc.subject.other Multiple source en
dc.subject.other Pixel level en
dc.subject.other Real time en
dc.subject.other Recognition rates en
dc.subject.other Semi-supervised learning en
dc.subject.other Sequential data en
dc.subject.other Visual behavior en
dc.subject.other Behavioral research en
dc.title Robust visual behavior recognition en
heal.type journalArticle en
heal.identifier.primary 10.1109/MSP.2010.937392 en
heal.identifier.secondary 5562658 en
heal.identifier.secondary http://dx.doi.org/10.1109/MSP.2010.937392 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract In this article, we propose a novel framework for robust visual behavior understanding, capable of achieving high recognition rates in demanding real-life environments and in almost real time. Our approach is based on the utilization of holistic visual behavior understanding methods, which perform modeling directly at the pixel level. This way, we eliminate the world representation layer that can be a significant source of errors for the modeling algorithms. Our proposed system is based on the utilization of information from multiple cameras, aiming to alleviate the effects of occlusions and other similar artifacts, which are rather common in real-life installations. To effectively exploit the acquired information for the purpose of real-time activity recognition, appropriate methodologies for modeling of sequential data stemming from multiple sources are examined. Moreover, we explore the efficacy of the additional application of semisupervised learning methodologies, in an effort to reduce the cost of model training in a completely supervised fashion. The performance of the examined approaches is thoroughly evaluated under real-life visual behavior understanding scenarios, and the obtained results are compared and discussed. © 2010 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Signal Processing Magazine en
dc.identifier.doi 10.1109/MSP.2010.937392 en
dc.identifier.isi ISI:000283242900006 en
dc.identifier.volume 27 en
dc.identifier.issue 5 en
dc.identifier.spage 34 en
dc.identifier.epage 45 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής