dc.contributor.author |
Sygkouna, I |
en |
dc.contributor.author |
Drakos, M-P |
en |
dc.contributor.author |
Anagnostou, M |
en |
dc.date.accessioned |
2014-03-01T01:34:27Z |
|
dc.date.available |
2014-03-01T01:34:27Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0926-6003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20742 |
|
dc.subject |
Distributed information retrieval |
en |
dc.subject |
Mobile agents |
en |
dc.subject |
NP-hard problems |
en |
dc.subject |
Planning |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Agent based |
en |
dc.subject.other |
Distributed data |
en |
dc.subject.other |
Distributed information retrieval |
en |
dc.subject.other |
Near-optimal solutions |
en |
dc.subject.other |
Network node |
en |
dc.subject.other |
NP-HARD problem |
en |
dc.subject.other |
Polynomial-time algorithms |
en |
dc.subject.other |
Route planning |
en |
dc.subject.other |
Simulation result |
en |
dc.subject.other |
Speed-ups |
en |
dc.subject.other |
Task completion time |
en |
dc.subject.other |
Computational complexity |
en |
dc.subject.other |
Information retrieval |
en |
dc.subject.other |
Multi agent systems |
en |
dc.subject.other |
Polynomials |
en |
dc.subject.other |
Mobile agents |
en |
dc.title |
Route planning for agent-based information retrieval |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10589-008-9204-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10589-008-9204-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
This article focuses on Mobile Agents and their use for information retrieval. A multi-agent system is considered; a number of agents are involved in a collective effort to retrieve distributed data from network nodes. Increasing the number of agents may speed-up information retrieval but is burdensome to performance. Initiating with a given number of agents, our objective is to determine the routes of the agents so that the task completion time is minimized. Two known and one new polynomial-time algorithms are tested that produce near-optimal solutions. Simulation results show the cases for which each one is most effective. Additionally, we study the influence of various parameters on the solution. By parametrically varying the number of agents, our method can be used to determine the minimum number that satisfies the desired trade-off between time and performance. © 2008 Springer Science+Business Media, LLC. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Computational Optimization and Applications |
en |
dc.identifier.doi |
10.1007/s10589-008-9204-7 |
en |
dc.identifier.isi |
ISI:000282060800004 |
en |
dc.identifier.volume |
47 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
77 |
en |
dc.identifier.epage |
96 |
en |