HEAL DSpace

Shear deformable bars of doubly symmetrical cross section under nonlinear nonuniform torsional vibrations-application to torsional postbuckling configurations and primary resonance excitations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sapountzakis, EJ en
dc.contributor.author Tsipiras, VJ en
dc.date.accessioned 2014-03-01T01:34:35Z
dc.date.available 2014-03-01T01:34:35Z
dc.date.issued 2010 en
dc.identifier.issn 0924-090X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20761
dc.subject Bar en
dc.subject Beam en
dc.subject Boundary element method en
dc.subject Independent warping parameter en
dc.subject Nonlinear vibrations en
dc.subject Nonuniform torsion en
dc.subject Primary resonance en
dc.subject Secondary twisting moment deformation effect en
dc.subject Shear deformation en
dc.subject Torsional postbuckling en
dc.subject Torsional vibrations en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Bar en
dc.subject.other Beam en
dc.subject.other Boundary elements en
dc.subject.other Independent warping parameter en
dc.subject.other Non-linear vibrations en
dc.subject.other Nonuniform torsion en
dc.subject.other Postbuckling en
dc.subject.other Primary resonance en
dc.subject.other Torsional vibration en
dc.subject.other Twisting moment en
dc.subject.other Algebra en
dc.subject.other Beams and girders en
dc.subject.other Boundary conditions en
dc.subject.other Circuit resonance en
dc.subject.other Control nonlinearities en
dc.subject.other Differentiation (calculus) en
dc.subject.other Dynamic response en
dc.subject.other Elastic waves en
dc.subject.other Machine vibrations en
dc.subject.other Nonlinear equations en
dc.subject.other Shear deformation en
dc.subject.other Torsional stress en
dc.subject.other Boundary element method en
dc.title Shear deformable bars of doubly symmetrical cross section under nonlinear nonuniform torsional vibrations-application to torsional postbuckling configurations and primary resonance excitations en
heal.type journalArticle en
heal.identifier.primary 10.1007/s11071-010-9778-3 en
heal.identifier.secondary http://dx.doi.org/10.1007/s11071-010-9778-3 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of arbitrary doubly symmetric constant cross section, taking into account the effects of geometrical nonlinearity (finite displacement-small strain theory) and secondary twisting moment deformation. The bar is subjected to arbitrarily distributed or concentrated conservative dynamic twisting and warping moments along its length, while its edges are subjected to the most general axial and torsional (twisting and warping) boundary conditions. The resulting coupling effect between twisting and axial displacement components is also considered and a constant along the bar compressive axial load is induced so as to investigate the dynamic response at the (torsional) postbuckled state. The bar is assumed to be adequately laterally supported so that it does not exhibit any flexural or flexural-torsional behavior. A coupled nonlinear initial boundary value problem with respect to the variable along the bar angle of twist and to an independent warping parameter is formulated. The resulting equations are further combined to yield a single partial differential equation with respect to the angle of twist. The problem is numerically solved employing the Analog Equation Method (AEM), a BEM based method, leading to a system of nonlinear Differential-Algebraic Equations (DAE). The main purpose of the present contribution is twofold: (i) comparison of both the governing differential equations and the numerical results of linear or nonlinear free or forced vibrations of bars ignoring or taking into account the secondary twisting moment deformation effect (STMDE) and (ii) numerical investigation of linear or nonlinear free vibrations of bars at torsional postbuckling configurations. Numerical results are worked out to illustrate the method, demonstrate its efficiency and wherever possible its accuracy. © 2010 Springer Science+Business Media B.V. en
heal.publisher SPRINGER en
heal.journalName Nonlinear Dynamics en
dc.identifier.doi 10.1007/s11071-010-9778-3 en
dc.identifier.isi ISI:000283590100024 en
dc.identifier.volume 62 en
dc.identifier.issue 4 en
dc.identifier.spage 967 en
dc.identifier.epage 987 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής