HEAL DSpace

Shear Deformation Effect in Flexural-torsional Vibrations of Composite Beams by Boundary Element Method (BEM)

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sapountzakis, EJ en
dc.contributor.author Dourakopoulos, JA en
dc.date.accessioned 2014-03-01T01:34:36Z
dc.date.available 2014-03-01T01:34:36Z
dc.date.issued 2010 en
dc.identifier.issn 1077-5463 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20763
dc.subject Boundary element method en
dc.subject composite beam en
dc.subject dynamic analysis en
dc.subject flexural-torsional vibration en
dc.subject shear deformation en
dc.subject twist en
dc.subject warping en
dc.subject vibrations en
dc.subject.classification Acoustics en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other THIN-WALLED-BEAMS en
dc.subject.other DYNAMIC STIFFNESS MATRIX en
dc.subject.other NONUNIFORM TORSION en
dc.subject.other TIMOSHENKO BEAMS en
dc.subject.other CROSS-SECTION en
dc.subject.other COUPLED VIBRATIONS en
dc.subject.other BARS en
dc.subject.other COEFFICIENT en
dc.title Shear Deformation Effect in Flexural-torsional Vibrations of Composite Beams by Boundary Element Method (BEM) en
heal.type journalArticle en
heal.identifier.primary 10.1177/1077546309341602 en
heal.identifier.secondary http://dx.doi.org/10.1177/1077546309341602 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract In this paper a boundary element method (BEM) is developed for the general flexural-torsional vibration problem of Timoshenko beams of arbitrarily shaped composite cross-section taking into account the effects of warping stiffness, warping and rotary inertia and shear deformation. The composite beam consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli with same Poisson's ratio and are firmly bonded together. The beam is subjected to arbitrarily transverse and/or torsional distributed or concentrated loading, while its edges are restrained by the most general linear boundary conditions. The resulting initial boundary value problem, described by three coupled partial differential equations, is solved employing a boundary integral equation approach. Besides the effectiveness and accuracy of the developed method, a significant advantage is that the displacements as well as the stress resultants are computed at any cross-section of the beam using the respective integral representations as mathematical formulae. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a non-symmetric cross-section. To account for shear deformations, the concept of shear deformation coefficients is used. Six boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the Analog Equation Method, a BEM-based method. Both free and forced vibrations are examined. Several beams are analyzed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. en
heal.publisher SAGE PUBLICATIONS LTD en
heal.journalName JOURNAL OF VIBRATION AND CONTROL en
dc.identifier.doi 10.1177/1077546309341602 en
dc.identifier.isi ISI:000282686800002 en
dc.identifier.volume 16 en
dc.identifier.issue 12 en
dc.identifier.spage 1763 en
dc.identifier.epage 1789 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής