HEAL DSpace

Short-term prediction of urban traffic variability: Stochastic volatility modeling approach

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsekeris, T en
dc.contributor.author Stathopoulos, A en
dc.date.accessioned 2014-03-01T01:34:36Z
dc.date.available 2014-03-01T01:34:36Z
dc.date.issued 2010 en
dc.identifier.issn 0733-947X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20765
dc.subject Forecasting en
dc.subject Intelligent transportation systems en
dc.subject Traffic flow en
dc.subject Traffic models en
dc.subject.classification Engineering, Civil en
dc.subject.classification Transportation Science & Technology en
dc.subject.other Conditional variance en
dc.subject.other Data input en
dc.subject.other Discrete-time en
dc.subject.other GARCH models en
dc.subject.other Generalized autoregressive conditional heteroscedasticity en
dc.subject.other Intelligent transportation systems en
dc.subject.other Measurement locations en
dc.subject.other Out-of-sample forecast en
dc.subject.other Performance measure en
dc.subject.other Predictive performance en
dc.subject.other Short term prediction en
dc.subject.other Stochastic volatility en
dc.subject.other Traffic flow en
dc.subject.other Traffic flow levels en
dc.subject.other Traffic model en
dc.subject.other Transportation management systems en
dc.subject.other Urban traffic en
dc.subject.other Urban traffic flow en
dc.subject.other Forecasting en
dc.subject.other Intelligent systems en
dc.subject.other Stochastic systems en
dc.subject.other Traffic surveys en
dc.subject.other Stochastic models en
dc.subject.other forecasting method en
dc.subject.other intelligent transportation system en
dc.subject.other numerical model en
dc.subject.other stochasticity en
dc.subject.other traffic management en
dc.subject.other urban transport en
dc.title Short-term prediction of urban traffic variability: Stochastic volatility modeling approach en
heal.type journalArticle en
heal.identifier.primary 10.1061/(ASCE)TE.1943-5436.0000112 en
heal.identifier.secondary http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000112 en
heal.identifier.secondary 004007QTE en
heal.language English en
heal.publicationDate 2010 en
heal.abstract This paper addresses the problem of modeling and predicting urban traffic flow variability, which involves considerable implications for the deployment of dynamic transportation management systems. Traffic variability is described in terms of a volatility metric, i.e., the conditional variance of traffic flow level, as a latent stochastic (low-order Markov) process. A discrete-time parametric stochastic model, referred to as stochastic volatility (SV) model is employed to provide short-term adaptive forecasts of traffic (speed) variability by using real-time detector measurements of volumes and occupancies in an urban arterial. The predictive performance of the SV model is compared to that of the generalized autoregressive conditional heteroscedasticity (GARCH) model, which has been recently used for the traffic variability forecasting, with regard to different measurement locations, forms of data input, lengths of forecasting horizon and performance measures. The results indicate the potential of the SV model to produce out-of-sample forecasts of speed variability with significantly higher accuracy, in comparison to the GARCH model. © 2010 ASCE. en
heal.publisher ASCE-AMER SOC CIVIL ENGINEERS en
heal.journalName Journal of Transportation Engineering en
dc.identifier.doi 10.1061/(ASCE)TE.1943-5436.0000112 en
dc.identifier.isi ISI:000278907400003 en
dc.identifier.volume 136 en
dc.identifier.issue 7 en
dc.identifier.spage 606 en
dc.identifier.epage 613 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής