HEAL DSpace

Simulation of urban wastewater systems using artificial neural networks: Embedding urban areas in integrated catchment modelling

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fu, G en
dc.contributor.author Makropoulos, C en
dc.contributor.author Butler, D en
dc.date.accessioned 2014-03-01T01:34:36Z
dc.date.available 2014-03-01T01:34:36Z
dc.date.issued 2010 en
dc.identifier.issn 1464-7141 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20767
dc.subject Artificial neural network en
dc.subject Catchment scale model en
dc.subject Integrated catchment management en
dc.subject Integrated modelling en
dc.subject Urban wastewater system en
dc.subject Water quality modelling en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Civil en
dc.subject.classification Environmental Sciences en
dc.subject.classification Water Resources en
dc.subject.other PART 1 en
dc.subject.other PERFORMANCE en
dc.subject.other METHODOLOGY en
dc.subject.other PREDICTION en
dc.title Simulation of urban wastewater systems using artificial neural networks: Embedding urban areas in integrated catchment modelling en
heal.type journalArticle en
heal.identifier.primary 10.2166/hydro.2009.151 en
heal.identifier.secondary http://dx.doi.org/10.2166/hydro.2009.151 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract The urban wastewater system is an important part of integrated water management at the catchment level, yet, more often than not, inclusion of the system and its interaction with the surrounding catchment is either oversimplified or totally ignored in catchment modelling. Reasons of complexity and computational burden are mostly at the heart of this modelling gap. This paper proposes to use artificial neural networks (ANN) as a surrogate for the simulation of the urban wastewater system, allowing for a more realistic representation of the urban component to be incorporated into catchment models within a broad scale modelling framework. As a proof of concept, an integrated urban wastewater model is developed and its response in terms of both quantity and quality in combined sewer overflow (CSO) discharges and treatment plant effluent are captured and used to train a feedforward back-propagation ANN. The comparative results of the integrated urban water model and the ANN show good agreement for both water quantity and quality parameters. The resulting trained network is then embedded into a MIKE BASIN catchment model. It is suggested that ANN models greatly improve the level at which broad scale catchment models can accurately take into account urban-rural interactions. © IWA Publishing 2010 Journal of Hydroinformatics. en
heal.publisher I W A PUBLISHING en
heal.journalName Journal of Hydroinformatics en
dc.identifier.doi 10.2166/hydro.2009.151 en
dc.identifier.isi ISI:000276755000002 en
dc.identifier.volume 12 en
dc.identifier.issue 2 en
dc.identifier.spage 140 en
dc.identifier.epage 149 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής